Ферромагнитные жидкости

                                          (4.34)

                                          (4.35)

                                                    (4.36)


Соотношения (4.34) и (4.35) показывают, что химические потенциалы фаз одинаковы, т.е. j1=j2=je. Отсюда из соотношений (4.34) и (4.35) для разности осмотических давлений фаз p =jn-f получаем


                                                        (4.37)


Из соотношения (4.37) видно, что в области малых магнитных переохлаждений, когда объемная доля концентрированной фазы l2/l мала, осмотическое давление разбавленной фазы меньше, чем концентрированной .

Соотношения (4.36) и (4.37) позволяют связать параметры полосовой структуры с магнитным переохлаждением системы. Так, из условия равновесия фаз  вытекает соотношение для изменения осмотического давления насыщенной разбавленной фазы с напряженностью поля [80]:


                                                                           (4.38)


Поскольку удельная намагниченность разбавленной фазы М1/n1 меньше концентрированной М2 /n2, то из соотношения (4.38) видно, что давление насыщения разбавленной фазы с ростом напряженности поля уменьшается. В начальной области возникновения структуры условие равенства химических потенциалов фаз  дает соотношение для избыточных по отношению к равновесному осмотических давлений фаз в виде

p1p2p1 –δp2p1 n2 (1/n2-1/n1 )                                                (4.39)


Так как р1- р2 < 0, то из последнего соотношения видно, что осмотическое давление разбавленной фазы в полосовой структуре больше давления насыщения при данной напряженности поля на величину δp1>0. Подобное переохлаждение соответствует давлению насыщения при некоторой меньшей напряженности поля, т.е.


рн(Н -δH) = pH(H) + δpl .


Отсюда соотношение (4.38) позволяет связать δp1 с магнитным переохлаждением выражением


 (4.40)


Наличие магнитного переохлаждения разбавленной фазы связано с затратами энергии для создания периодического распределения поля в торцевой области полос и образованием границ раздела фаз.

В результате, соотношения (4.36) и (4.37) дают следующую систему уравнений для определения зависимости периода структуры и объемной доли концентрированной фазы от напряженности магнитного поля:


                                    (4.41)

                                                            (4.42)


Здесь  характерный масштаб полосовой структуры, который можно выразить через магнитное число Бонда Вm=μо(М2-М1)h1/2ps0 в виде: . При нахождении зависимостей параметров полосовой структуры от напряженности поля необходимо учитывать, что при ее возникновении изменяется среднее размагничивающее поле в щели. Вследствие этого, соответствующее магнитному переохлаждению в щели  увеличение напряженности внешнего поля δН в пренебрежении магнитными восприимчивостями фаз равно


l                                   (4.43)


Тогда, учитывая, что намагниченность концентрированной фазы


 для  из (4.41) получаем

                               (4.44)


Согласно рассчитанной с помощью соотношений (4.42) и (4.43) (при реальном значении параметра p2h1/l0=40 ) зависимости обратной величины периода полосовой структуры от напряженности внешнего поля угол дифракционного светорассеяния, пропорциональный обратной величине периода структуры, увеличивается с ростом напряженности поля, как это и наблюдается в эксперименте (см. рис. 27). Уменьшение периода структуры с ростом напряженности магнитного поля обусловлено увеличением объемной доли концентрированной фазы. Энергия, необходимая для периодического распределения поля в торцевой области полос и новых границ раздела фаз, выделяется при образовании этой структуры.

Как уже было указано выше, представление о дифракционном рассеянии света периодической системой микрокапель конденсированной фазы находится в количественном соответствии с данными эксперимента. Так, угол дифракционного рассеяния света с длиной волны l = 0,63 мкм, q = 0,84 10-1 рад. при Н = 8 кА/м (см. рис. 27) соответствует определенному по приведенной в работе [159] формуле периода структуры l»7l/2pq=8,4 мкм, что менее чем вдвое отличается от значения (15 мкм), найденного при данном значении напряженности поля путем наблюдений в оптический микроскоп. Вполне разумным оказался и характерный масштаб напряженностей поля, в котором в эксперименте наблюдается изменение параметра решетки микрокапель. Так, согласно рис. 27, двукратному увеличению первого дифракционного кольца соответствует увеличение напряженности поля примерно на 9,6 кА/м. Подобное увеличение угла дифракции света, согласно теоретическим расчетам при p2h1/l0 =40 соответствует напряженносности поля , откуда для поверхностного натяжения границы раздела разбавленной и концентрированной фаз получается вполне приемлемое значение sо= 4·10-4 н/м (h = 20 мкм) .

Отметим, что экспериментально полученная зависимость радиуса дифракционного кольца от величины напряженности поля имеет на начальном этапе ступенчатый характер. По-видимому, это связано с интенсивным возникновением новых микрокапельных агрегатов при достижении некоторого порогового значения напряженности поля. В последующем пороговые значения напряженности поля, при которых в рассматриваемых МЖ наблюдалось образование агрегатов, в зависимости от концентрации и температуры определялись совместно с К.А.Балабановым и Н.Г.Полихрониди в работе [166]. Ступенчатость зависимости R(H) может быть обусловлена, как показано в [160], и продольными делениями игольчатых агрегатов при достижении некоторой величины напряженности магнитного поля. Однако, в нашем случае кривая R(H), приведенная на рис. 30 получена для образца, в котором отсутствовало расщепление агрегатов. Для того же образца, где наблюдается указанное явление, выраженной ступенчатости зависимости R(H) не наблюдалось, так как расщепление агрегатов, вследствие их некоторой не идентичности, происходило не при определенном значении напряженности поля, а в некотором его интервале, к тому же на этот процесс накладывается возникновение новых агрегатов. При достаточно большом значении напряженности поля, когда вследствие сильного обеднения слабо-концентрированной фазы возникновение новых агрегатов прекращается, зависимость радиуса дифракционного кольца от напряженности поля становится гладкой, близкой к линейной. Характер структурных изменений естественным образом связан и с интенсивностью дифрагированного света, которая пропорциональна числу рассеивающих частиц. Однако, корреляция зависимостей n(Н) и Ф(Н) , как можно видеть из рисунка 31 наблюдается только в начальном интервале значений напряженности магнитного поля. Последующее уменьшение интенсивности дифракционного кольца при достижении некоторого значения поля, вероятно, связана с зависимостью коэффициента рассеяния света от отношения размера частиц к длине волны проходящего света.


Рис.31. Зависимость радиуса дифракционного кольца R, его интенсивности Ф и концентрации агрегатов от напряженности магнитного поля.


Согласно [145], для коэффициента рассеяния света на сферах, при его незначительном поглощении ими, может быть использовано выражение:


                                                            (4.45)


где -, nC и nФ - показатели преломления среды и материала сфер соответственно. Анализ выражения (4.45) позволяет также объяснить пульсации яркости дифракционного кольца, наблюдающиеся после выключения магнитного поля (рис.28).


Рисунок 28. Пульсации интенсивности первого дифракционного максимума при выключении поля. Напряженность поля в момент его выключения 2,8 кА/м, толщина слоя 3 0 мкм.


По-видимому, это явление связано с изменением поперечного размера игольчатого агрегата при его стягивании после выключения поля в каплю. Заметим, что время, в течение которого происходит восстановление капли из иголки, определенное с помощью наблюдений в оптический микроскоп, полностью соответствует продолжительности пульсирования яркости дифракционного кольца, а колебания формы капли, вследствие достаточной вязкости вещества капли и омывающей ее среды, отсутствуют .

Таким образом, образование микрокапельной структуры в магнитных жидкостях и возможность управления ею с помощью магнитного поля и сдвиговых напряжений позволяет наблюдать в таких средах эффекты дифракционного рассеяния света и двойного лучепреломления. В свою очередь, исследование последних открывает возможность изучения структуры и структурных превращений в магнитных жидкостях, оказывающих, как будет показано ниже, существенное влияние на поляризационные процессы в таких МЖ.

 

2.3 Динамические процессы в магнитной жидкости с микрокапельной структурой в электрическом и магнитном полях

1. Деформационные эффекты.

Как было указано ранее в 4.1.2, в магнитном поле происходит деформация микрокапельных агрегатов, которая, к настоящему времени достаточно хорошо изучена как для постоянных [155,157], так и для переменных магнитных полей [167] . Однако, изменение формы микрокапель ных агрегатов может происходить также и в электрическом поле, что представляет несомненный интерес с точки зрения управления структурой таких систем с помощью одновременного воздействия магнитного и электрического полей.

Характер воздействия электрического поля определяется электрическими свойствами среды. Когда среда является идеальным диэлектриком, деформацию капли в вытянутый эллипсоид вращения и последующий ее разрыв легко объяснить теоретически, предполагая, что нормальная составляющая тензора электрических напряжений на поверхности капли уравновешена капиллярным давлением, возникающим вследствие неравномерности кривизны капли [168]. Этот же факт был установлен из энергетических соображений [169,170].

Если окружающая каплю среда электропроводна, то к силам поляризационного происхождения добавляются и кулоновские силы, действующие на накапливающиеся на межфазных границах гетерогенной среды свободные заряды [168]. При этом [171], на поверхности капли существует трансверсальное электрическое напряжение, которое генерирует течение внутри и вне капли. В этом случае теория [171] предсказывает образование как сплюснутых, так и вытянутых эллипсоидов в зависимости от отношения диэлектрических постоянных, удельных электрических сопротивлений и коэффициентов вязкости двух жидкостей, а также существование критических значений этих отношений, при которых капля остается сферической. Как показано в [172,173], в подобных ситуациях возможно явление отрицательной эффективной вязкости, колебательной электрогидродинамической неустойчивости .

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать