Экспериментальное изучение деформации микрокапель, содержащихся в магнитных жидкостях проводилось с помощью наблюдений в оптический микроскоп. При этом, использовалась ячейка, представляющая собой предметное стекло, на поверхность которого наклеены две прямоугольные металлические пластины, в зазоре между торцами которых создавалось электрическое поле (подробное описание приведено в гл.2). Для создания однородного электрического поля на электроды подавалось напряжение от источника постоянного напряжения, однако, вследствие того, что наблюдения в постоянных полях связаны с большими трудностями из-за поляризации электродов и электрофоретической миграции структурных образований, исследования проведены в переменных полях в частотном диапазоне 20 Гц -20 кГц. Было установлено, что характер деформации микрокапельных агрегатов в электрическом поле существенно отличается от деформации капли магнитной жидкости, находящейся в глицерине, исследованной в [174]. Так, при низких частотах наблюдается не вытягивание агрегата в эллипсоид, что характерно для капли МЖ в глицерине или воде, а его сплющивание, т. е. ее трансформация в форму диска, плоскость которого перпендикулярна силовым линиям напряженности электрического поля. Оказалось, что в слабом электрическом поле (Е < 50 кВ/м) характер деформации микрокапельного агрегата существенно зависит от частоты поля: при низких частотах (f < 1 кГц) капля сплющивается, а при более высоких - вытягивается вдоль силовых линий электрического поля. Зависимость характера деформации микрокапельных агрегатов от частоты электрического поля проиллюстрировано рисунком 32, из которого видно, что при некоторой частоте поля (около 800 Гц) отношение полуосей а/b агрегата переходит от значений больших единицы к значениям меньше ее. В более сильных полях, начиная с некоторого критического значения напряженности поля (Е >100 кВ/м) в магнитных жидкостях с микрокапельной структурой возникают вихревые течения, приводящие к разрушению микрокапель.
Рис.32. Зависимости деформации микрокапельного агрегата а/b от напряженности переменного электрического поля Е при различных значениях частоты (l-f=0,6, 2-f=0,8, 3-f=l, 4-f=3, 5-f=5 кГц) (а) и От частоты этого поля f (б) при Е=30кВ/м.
Обсуждение обнаруженных явлений проведем на основе теоретического подхода, разработанного Цеберсом А.О. (изложенного в совместной работе [175]) при использовании основных идей работы [168].
Существенной особенностью стационарного поведения капли в электрическом поле по сравнению со случаем магнитного поля является наличие движения жидкости, определяющего ее форму. Оно возникает вследствие действия касательных электрических напряжений на межфазных границах, где накапливаются свободные заряды. По этой причине система уравнений, описывающая поведение капли в электрическом поле, включает уравнения и граничные условия электростатики, гидродинамики, а также закон сохранения заряда. В приближении ползучих течений она имеет вид (индексом "1" обозначены величины, относящиеся к области капли, "2" - к окружающей ее среде:
; ;
(4.46)
Граничные условия электростатики и гидродинамики на поверхности капли имеют следующий вид:
;
(4.47)
Здесь 1/Rk - средняя кривизна поверхности, s0 - поверхностное натяжение. - тензор электрических напряжений, а индексы "t" и "n" обозначают компоненты тангенциальные и нормальные к поверхности. Для замыкания системы (4.46) и (4.47) ее необходимо дополнить уравнением баланса поверхностного заряда, которое в общем случае имеет вид:
(4.48)
Первый член в правой части (4.48) представляет поверхностную дивергенцию конвективного тока, обусловленного переносом заряда движущейся жидкостью.
Плотность тока проводимости определяется законом Ома . Вдали от капли напряженность электрического поля равна напряженности внешнего поля, а скорость движения окружающей каплю жидкости равна нулю. В начальной области значений напряженности электрического поля, когда скорость индуцированного им движения мала, конвективным переносом заряда можно пренебречь. Тогда, в данном приближении система уравнений (4.46) - (4.47) для малых стационарных отклонений формы капли от сферической в переменном однородном электрическом поле с угловой частотой ω, уравнение поверхности которой в сферической системе координат имеет вид
, дает , где
(4.49)
-
максвеловское время релаксации свободного заряда. Соотношение (4.49) позволяет выявить ряд характерных особенностей поведения капли в электрическом поле. В области значений физических параметров капли и окружающей ее жидкости, в которой
(4.50)
капля сплюснута вдоль вектора Е [168]. Критическое значение частоты, при которой происходит восстановление сферической формы капли, определяется из соотношения:
(4.51)
Так как при ε1/ε2 = γ1/γ2 (как легко убедиться из соотношения (4.49)), деформация капли от частоты электрического поля не зависит, то при указанном соотношении электрофизических параметров меняется характер частотной зависимости капли. При εl/ε2<γ1/γ2 степень растяжения капли вдоль вектора напряженности поля с ростом частоты уменьшается, а при εl/ε2>γ1/γ2 увеличивается.
Таким образом, полученные результаты показывают, что принципиальную роль в поведении микрокапель магнитной жидкости играют свободные заряды на межфазных границах. Существенное значение при этом имеет и жидкое состояние гетерогенных включений. Действительно, в противоположном случае, вследствие стремления анизотропного тела в электрическом поле ориентироваться в направлении, которому соответствует минимальное значение коэффициента деполяризации, устойчивое состояние тела в виде сплюснутого вдоль электрического поля эллипсоида было бы невозможным. В случае жидких капель подобное положение может оказаться в области достаточно слабых полей устойчивым, благодаря явлению релаксации ее формы. При этом, уравнение для тензора анизотропии для таких сред можно предложить в виде:
где ζ0 - равновесное значение тензора анизотропии среды в электрическом поле; τ - время релаксации анизотропии формы капель, равное
Если характерное время поворота капли в электрическом поле (- коэффициент вращательного трения капли) больше времени релаксации ее формы τ, то может сохранять устойчивость форма в виде расположенного поперек электрического поля диска.
В случае сплющивания капли в низкочастотном диапазоне переменного электрического поля возможна компенсация ее деформации с помощью дополнительного воздействия сонаправленным с электрическим магнитного поля. Это явление определяет ряд свойств магнитных жидкостей с микрокапельной структурой, проявляемых ими в магнитных и электрических полях. Возникающая при совместном действии слабых электрического и магнитного полей анизотропия такой эмульсии, когда степень отклонения формы капель от сферической мала, представляется в виде суперпозиции анизотропии, наводимых каждым из полей в отдельности [175]. Тогда
(4 . 52)
где h - единичный вектор вдоль направления постоянного магнитного поля. Для эксцентриситета слабо деформированной в магнитном поле капли полученное в [152] соотношение в предельном случае малых е дает формулу
(4.53)
которая совпадает с соответствующей формулой для деформации капли в электрическом поле высокой частоты при замене ε на μ и значения напряженности электрического поля на его эффективное значение . В результате для суммарной магнитной анизотропии эмульсии при сонаправленном действии переменного электрического и постоянного магнитного полей имеем:
(4.54)
Из соотношения (4.54) видно, что в случае выполнения неравенства (4.50) существует такая напряженность постоянного магнитного поля, сонаправленного электрическому, при которой результирующая анизотропия эмульсии отсутствует. Это имеет место при напряженности магнитного поля, квадрат которой равен:
(4.55)
Экспериментальное исследование эффекта компенсации деформации капель осуществлялось с помощью наблюдений в оптический микроскоп. При этом, использовалась ячейка для оптических наблюдений деформации микрокапель в электрическом поле, дополненная катушками Гельмгольца в качестве намагничивающей системы. Наблюдения осуществлялись следующим образом. Выбиралась капля для исследования. На электроды ячейки подавалось напряжение, измеряемое с помощью цифрового вольтметра. При этом капля деформировалась (сплющивалась) так, что ее малая полуось совпадала с направлением электрического поля. Затем, медленной регулировкой магнитного поля, сонаправленного с электрическим, капле возвращали ее исходную форму. Повышали электрическое поле и вновь компенсировали вызванную им деформацию капли соответствующим повышением магнитного поля. Исследования продолжали до значений электрического поля, при которых начинали возникать электро-вихревые течения, приводящие к разрушению капли. Было исследовано несколько десятков капель, на основании обработки результатов этих исследований построен компенсационный график в координатах Е2~Н2 , приведенный на рис. 33.
Рисунок 33. Компенсационный график анизотропии формы капель в сонаправленных электричеством и магнитном полях.
Анализ графика позволяет сделать вывод о наличии пропорциональности квадрата напряженности постоянного магнитного поля квадрату напряженности электрического поля, вплоть до напряженности электрического поля Е=200 кВ/м и подтверждает результаты теоретических исследований, согласно которым напряженности магнитного и электрического поля при компенсации связаны соотношением (4.55). Тангенс угла наклона прямой на рис. 33, равный 0,5 хорошо соответствует ожидаемой, согласно (4.55), теоретической величине при малых γ1/γ2.
2. Динамика структурных изменений и рассеяние света.
Как уже было отмечено, в магнитной жидкости с микрокапельной структурой в электрическое поле помимо сил поляризационного происхождения существенную роль играют кулоновские силы, обусловленные накоплением заряда на межфазных границах. Вследствие этого, в подобных системах возможно развитие специфических электрогидродинамических неустойчивостей, лимитируемых процессами релаксации заряда, а также формой капель. Электрогидродинамические процессы приводят к изменению структуры магнитной жидкости, что в свою очередь оказывает влияние на магнитные и оптические свойства такой МЖ. Так, например, благодаря этим процессам в магнитной жидкости наблюдается дифракционное рассеяние света, имеющее ряд особенностей [175,176].
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12