§3. Магнитная восприимчивость магнитных жидкостей и ее функциональные зависимости
Согласно одночастичной модели, предполагающей возможность описания процессов намагничивания магнитных жидкостей с помощью теории Ланжевена, зависимость их магнитной восприимчивости от концентрации дисперсной фазы должна быть линейной. Однако, в первых же работах, посвященных исследованиям в этой области [16, 17] было показано, что она таковой не является.
На рисунке 8 приведена зависимость магнитной восприимчивости магнитной жидкости с магнетитовыми частицами и керосином в качестве дисперсионной среды от объемной концентрации дисперсной фазы [17], измеренной в переменном поле, частотой 200 Гц, при различных значениях напряженности дополнительно приложенного постоянного магнитного поля.
Рисунок 8. Зависимость относительной величины магнитной восприимчивости магнитной жидкости от объемной концентрации дисперсной фазы при отсутствии внешнего магнитного поля (кривая 1) и при различных значениях его напряженности; 2 - Н=280 А/м, 3- Н=360 А/м, 4 - Н=1200 А/м.
Как видно из рисунка, все графики являются нелинейными, при этом можно констатировать, что наиболее сильное изменение тангенса угла наклона представленных зависимостей наблюдается в области концентраций 4 -6%. Увеличение внешнего постоянного магнитного поля приводит к уменьшению нелинейности концентрационной зависимости магнитной восприимчивости вплоть до его полного исчезновения при напряженности поля = 2 кА/м. Аналогичные зависимости получены также и при непосредственном использовании, в качестве измерительного, постоянного магнитного поля (с помощью баллистического метода). В последующем, о получении нелинейной зависимости магнитной восприимчивости магнитных жидкостей на основе керосина от объемного содержания магнетита сообщалось в работах А.Ф. Пшеничникова с соавторами [18,19]. Нелинейный характер зависимости магнитной восприимчивости от концентрации дисперсной фазы был обнаружен также для других типов магнитных жидкостей [20]. На рисунке 9 показана зависимость действительной части комплексной магнитной восприимчивости (частота 200 Гц) от концентрации магнетитовых частиц для магнитной жидкости на основе вакуумного масла, которая, как можно видеть из рисунка, заметно изменяет свою крутизну при концентрации = 4%. Следует отметить, что во всех случаях, при проведении концентрационных исследований магнитной восприимчивости магнитных жидкостей, изменение концентрации дисперсной фазы, как правило, осуществляется путем последовательного разбавления исходного образца жидкостью, используемой в качестве дисперсионной среды.
Рисунок 9. Зависимость действительной части магнитной восприимчивости (кривая 2, f=200 Гц) и магнитной восприимчивости в постоянном поле (кривая 1) от объемной концентрации дисперсной фазы при напряженности измерительного поля 160 А/м.
Однако, такая процедура может привести к частичному нарушению агрегативной устойчивости магнитной жидкости. Например, разбавление магнитной жидкости чистым керосином при определенных условиях приводит [21Дроздова] к появлению микрокапельных агрегатов, в которых концентрация дисперсных частиц выше, чем в омывающей их среде. Процесс формирования микрокапельных агрегатов (который подробно будет рассмотрен в следующей главе) по-видимому, характерен только для магнитных коллоидов и обусловлен, как магнитодипольным взаимодействием дисперсных частиц, так возникающим дефицитом ПАВ при разбавлении исходного образца. Вследствие этого, интенсивность образования микрокапельных агрегатов может усиливаться на определенном этапе разбавления, соответствующем некоторой области объемных концентраций. В свою очередь, это должно сказываться на характере концентрационной зависимости магнитной восприимчивости среды. Действительно, в работе [17], резкое изменение крутизны концентрационной зависимости магнитной восприимчивости МЖ на основе керосина при концентрациях 4 – 6 % идентифицируется как ее излом, связанный с возникновением агрегатов при достижении этой области концентраций при разбавлении исходного образца керосином. При выдерживании в течение длительного времени приготовленных образцов с различной концентрацией дисперсной фазы, содержащиеся в них микрокапельные агрегаты, могут растворяться или оседать на дно контейнера. В этом случае концентрационная зависимость магнитной восприимчивости должна отличаться от аналогичной зависимости, полученной при измерении свежеприготовленных образцов. Действительно, зависимость магнитной восприимчивости от концентрации дисперсной фазы, полученная после выдерживания образцов в течение нескольких недель (при определении концентрации дисперсной фазы непосредственно перед измерением) является более сглаженной, без видимых изломов. Связь обнаруженного излома концентрационных зависимостей магнитной восприимчивости МЖ на основе вакуумного масла [20] с процессами возникновения агрегатов подтверждается исследованиями рассеяния света тонкими слоями образцов, использованных при магнитных измерениях. Как можно видеть из рисунка 10, в области концентраций, соответствующей излому концентрационной зависимости магнитной восприимчивости, происходит заметное увеличение изотропного рассеяния света в случае отсутствия внешнего магнитного поля (кривая 1). Дополнительное воздействие постоянного магнитного поля делает рассеяние света анизотропным с существенным ростом в области концентраций, соответствующих указанному излому (кривая 2).
Рисунок 10. Зависимость относительной интенсивности светорассеяния от концентрации дисперсных частиц.
Таким образом, образование агрегатов при разбавлении магнитных жидкостей, может приводить к особенностям концентрационных зависимостей их магнитной восприимчивости. Вместе с тем, как уже указывалось выше, эта зависимости являются нелинейными даже в случае отсутствия видимых структурных превращений. Очевидно, что характер зависимостей магнитной восприимчивости магнитных жидкостей от концентрации дисперсной фазы во многом определяется диполь-дипольным взаимодействием однодоменных дисперсных частиц.
Дипольное взаимодействие должно определять характер и температурной зависимости магнитной восприимчивости магнитных жидкостей. Действительно, в первых работах, посвященных исследованию этих зависимостей [95, 96 Моя дисс.] было показано, что зависимость магнитной восприимчивости от температуры может быть представлена в виде выражения, аналогичного закону Кюри-Вейса, т.е.
где , - температура, определяемая интенсивностью взаимодействия дипольных частиц.
Следует указать на необходимость осторожности при интерполяции, полученной экспериментально зависимости , какой-либо функцией, вследствие зависимости намагниченности насыщения магнетита от температуры, а также теплового расширения дисперсионной среды. В связи с этим, в работе [95] при расчете , полученная экспериментально зависимость перестраивалась с учетом этих факторов, а в работе [96] экспериментальные исследования проводились для концентрированной жидкости на основе толуола, имеющего малый коэффициент теплового расширения (?). Напомним, что в приближении одночастичной модели температурная зависимость магнитной восприимчивости магнитной жидкости должна определяться выражением (?), т.е законом Кюри .
Проведенный в [95,96] анализ результатов экспериментальных исследований позволил определить значение , которое, как оказалось, колеблется в пределах 150 – 210 К для различных исследованных образцов.
Таким образом, для магнитной восприимчивости магнитных жидкостей вместо (1.3) может быть использовано выражение:
( )
С учетом этого, для расчета диаметра частиц по магнитным измерениям в слабых полях должна быть использована формула:
(х)
В качестве примера были проведены магнитогранулометрические расчеты для двух образцов магнитной жидкости ( и ). Предварительно была проведена оценка диаметра частиц по формуле ( ), полученной на основе теории Ланжевена без учета взаимодействия частиц. В результате для первого образца было получено , для второго - . Гранулометрические расчеты, выполненные на основе формулы (х), учитывающей взаимодействие частиц дали для образца (), , для образца () . Таким образом, учет взаимодействия частиц существенно снижает значение диаметра частиц, рассчитанное по магнитным измерениям в слабых полях. В то же время можно заключить, что при магнитогранулометрических расчетах в сильных полях взаимодействием частиц можно пренебречь, вследствие несущественного вклада локальных полей частиц в намагничивающее поле.
Дальнейшие исследования показали, что линейность зависимостей нарушается при понижении температуры до некоторой температуры , значение которой увеличивается при дополнительном воздействии постоянного магнитного поля (рис.11).
Рисунок 11. Температурная зависимость обратной величины действительной части магнитной восприимчивости МЖ на основе керосина (р = 1,88*103 кг/м3) при различных значениях напряженности постоянного поля Н(кА/м); 1 - 1,4, 2 - 1,1, 3 - 0,54, 4-0.
В дальнейшем были проведены температурные исследования магнитной восприимчивости устойчивых к агрегированию при нормальных условиях МЖ на основе керосина в области более низких температур, включая точку перехода ( ) из жидкого состояния в твердое. На рисунке 12 приведены температурные зависимости эффективных величин обратной действительной и мнимой частей магнитной восприимчивости магнитной жидкости на основе керосина в температурном интервале , из которых следует, что в окрестности температуры затвердевания МЖ наблюдается минимум (т.е. максимум ), а также максимум . В последующих исследованиях аналогичная зависимость для температурной зависимости магнитной восприимчивости получена при измерении другими методами: баллистическим и с помощью феррометра [121Моя дис.]
Рисунок 12. Температурная зависимость обратной величины действительной (кривая 1) и мнимой (кривая 2) частей магнитной восприимчивости МЖ на основе керосина в интервале температур 170К<Т<273К
Максимум температурной зависимости был обнаружен также О’ Грэди и др. [96]. В дальнейшем, подобные исследования, вследствие возросшего к ним интереса, проводились рядом исследователей ([90, 100] и др.), которыми были получены аналогичные результаты.
При измерении МЖ на основе керосина, при дополнительном воздействии постоянного магнитного поля, происходит изменение характера этой зависимости (рис.13), а именно, в области температуры затвердевания жидкости минимум сменяются максимумом (т.е. наблюдается минимум ). Следует указать условия представленной зависимости: образец сначала замораживали при температуре около - 400С, затем помещали его в постоянное магнитное поле и получали указанную зависимость мостовым методом при частоте 200 Гц путем повышения температуры до 60 – 700 С. Все описанные выше особенности температурных зависимостей магнитной восприимчивости исследованных образцов в области температуры их замерзания можно связать с блокировкой броуновских степеней свободы однодоменных частиц при затвердевании среды. Действительно, понижение температуры приводит к уменьшению вероятности тепловых флуктуаций магнитного момента частицы и затруднению его вращения относительно твердой матрицы. В этом случае, в используемом в качестве измерительного переменном магнитном поле, с периодом меньшим времени неелевской релаксации (определяемой выражением (1.1)) частица ведет себя как магнитожесткий диполь. Поэтому, намагничивание магнитной жидкости происходит за счет вращения твердой матрицы частицы в жидкой среде под воздействием магнитного поля. Естественно, что затвердевание дисперсионной среды приводит к блокировке таких вращений и, как следствие, уменьшению намагниченности и магнитной восприимчивости магнитной жидкости. Тот факт, что уменьшение магнитной восприимчивости при затвердевании среды происходит не скачкообразно, а плавно, по-видимому связано с полидисперсностью системы: в магнитной жидкости присутствуют достаточно малые частицы, сохраняющие неелевский механизм релаксации магнитного момента при достаточно низких температурах. Подтверждение правильности предполагаемых механизмов намагничивания магнитных жидкостей может быть получено с помощью исследования частотной зависимости их комплексной магнитной восприимчивости. Впервые такие исследования были предприняты М.М. Майоровым [].
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12