2.1. Авторадиография
Это исторически самый первый и, по-прежнему, весьма популярный метод детекции различных радионуклидов. Главное преимущество авторадиографии — простота и доступность. Выдержите (проэкспонируйте) образец с рентгеновской пленкой, затем проявите пленку в стандартных условиях — и получите картину распределения радионуклида по поверхности образца: геля, тонкослойной хроматограммы и т.д.
Если полученная "картинка" вас не устраивает — можно повторить экспозицию с новой пленкой, увеличивая (или уменьшая) время по своему желанию. Обычно время экспозиции меняют в 2÷3 раза, так как изменение времени экспозиции на 20÷30% существенных изменений в картину не вносит.
Весь сиквенс ДНК и РНК с радиоактивным фосфором использовал исключительно авторадиографию. Флюоресцентная метка практически полностью вытеснила радиоактивные изотопы из секвенирования, однако авторадиография остается широко применяемым методом детекции.
Главный недостаток авторадиографии — сложности с количественной оценкой. При визуальном определении даже интуитивно ясно, что интенсивность "почернения" пленки пропорциональна количеству радиоактивных атомов в этом месте. Но вопрос об этой "пропорциональности" нуждается в пояснении. Существует несколько типов сканеров, позволяющих довольно точно определять интенсивность "зачернения" пленки и, следовательно, сравнивать пятна инструментально, а не "на глаз". Оказалось, что диапазон активности препарата, в котором интенсивность "зачернения" пленки прямо пропорциональна количеству радиоактивных атомов, очень невелик и зависит от времени экспозиции образца с пленкой, типа пленки, природы радионуклида (тип распада и энергия излучения) и даже от режима обработки пленки. Например, для фосфора-32 за ночь экспозиции линейная зависимость "зачернения" пленки от активности образца находится в диапазоне 0,5÷25 Бк на мм2 (примерно 30÷1500 имп/мин). Дальнейшее увеличение активности образца, например, до 100 Бк на мм2 не приводит к большей интенсивности "зачернения" — всё уже "зашкалило".
Поэтому, простой совет для начинающих работать с количественной авторадиографией. Сделайте несколько калибровок — нанесите ряд пятен диаметром 1÷1,5 мм с активностью 1 · 3 · 10 · 30 · 100 · 300 Бк, проэкспонируйте их с рентгеновской пленкой различное время и после обработки пленки просканируйте её на своем приборе. Вы сразу определите диапазон, в котором ваши последующие количественные измерения радиоавтографов будут корректными. Для разных радионуклидов такой диапазон различается очень существенно, но учитывать его надо в любом случае.
Для увеличения чувствительности авторадиографии (точнее, для уменьшения времени экспозиции) можно воспользоваться усиливающими экранами. Это весьма эффективно для фосфора-32 или йода-125, однако практически бесполезно для мягких (слабоэнергетических) β-излучателей. Использование экрана для фосфора-32 позволяет снизить время экспозиции в 2÷3 раза, но за это приходится "платить" ухудшением разрешения, которое происходит за счет "размывания зон".
2.2. Сцинтилляционные счетчики
Эффект сцинтилляции для количественного определения радионуклидов начинали использовать еще во времена Резерфорда, который визуально считал сцинтилляционные вспышки под микроскопом. За сто лет принципиальных изменений не произошло. Рядом с источником излучения помещают сцинтиллятор и ФЭУ (фотоэлектронный умножитель), который считает вспышки. Сцинтиллятор может быть твердым, а может быть и жидким (чаще, растворенным в жидкости). Во флакон (vial) с жидким сцинтиллятором добавляют тестируемый образец, и в этом случае можно эффективно измерять даже самое "слабое", низкоэнергетическое излучение.
При измерении активности (радиоактивности) любых образцов и для любых средств измерения необходимо помнить несколько простых, но важных правил:
10. Радиоактивный распад является классическим примером случайного, вероятностного природного процесса и, рассматривая измерение активности как регистрацию случайных событий, мы получаем математическую ошибку измерения активности:
n1/2/n x 100%
где n — число "событий" (в нашем случае распадов)
Например, для 400 зарегистрированных импульсов на любом приборе независимо от времени измерения (наблюдения) 4001/2 / 400 х 100% = 5%, т.е. ошибка 5%. Это означает, что чем больше число измерений (собственно счет), тем меньше математическая ошибка измерения. Более того, вопреки устоявшейся традиции, для снижения математической ошибки измерения надо считать не число зарегистрированных прибором распадов (импульсов) за единицу времени, а время, необходимое для "накопления нужного" числа импульсов — например, 10000 имп. Тем не менее, во всем мире активность с помощью счетчиков измеряют как количество импульсов за единицу времени (обычно по 1 минуте).
11. Все счетчики имеют верхний предел измерения, после которого их точность падает, так как счетчик не успевает регистрировать — "захлебывается". Для сцинтилляционных счетчиков — это активность на уровне 106÷107 расп./мин. Некоторые типы счетчиков имеют встроенную блокировку и отказываются считать образцы, активность которых превышает установленную для данной модели. Оптимальная активность образца для точного измерения 104÷106 расп./мин.
12. Проводя количественные измерения, например, определяя концентрацию радионуклида в растворе, всегда делайте хотя бы 2, а лучше 3 измерения независимых аликвот и активность определяйте как среднюю из 2 — 3 измерений. Затраты времени на "лишние" процедуры будут с лихвой компенсированы отсечением случайных "выбросов". Разброс в измерениях, особенно у начинающих исследователей, может достигать 200% и более, хотя в норме не должен превышать обычную ошибку рутинного отбора аликвот.
13. Ни один измерительный прибор не регистрирует 100% всех "распадов" (decompositions) в измеряемом образце. Эффективность счета — это коэффициент, который связывает зарегистрированные прибором импульсы (counts) и реальные распады (decompositions). Поэтому для любого измерения распады/мин. (dpm — decompositions per min.) больше импульсов/мин. (cpm — counts per min.). Правда, для большинства радионуклидов, применяемых в life science, эффективность жидкостного сцинтилляционного счета составляет более 90%. Однако, тритий удается измерять с эффективность не более 50÷60%. Обычно эффективность счета для каждого радионуклида указывается в технической документации к прибору, и долгое время негласное соревнование между фирмами за более высокую эффективность счета трития было чуть ли не главным двигателем технического прогресса в этой области.
14. Все измерительные приборы имеют собственный "фон" — регистрируют какое-то количество импульсов без источника ионизирующего излучения (радиоактивного препарата). Природа фона различна: космическое излучение, электронный шум, содержание природных радионуклидов в помещении, где установлена измерительная аппаратура и т.д. Поэтому минимально достоверная величина активности, измеряемая прибором, увязывается с фоном и обычно принимается равной трехкратному превышению фона данного прибора. Если в вашем "эпохальном" эксперименте активность "главного" образца едва-едва превышает фон, попытайтесь увеличить время измерения (можно до 20 мин.) — тогда достоверность измерения возрастёт.
15.
В большинстве случаев в life science абсолютные
измерения активности не нужны, и гораздо важнее получить информацию об
относительной активности образцов: распределение активности по гелю,
хроматографической пластинке или по элюированным с колонки продуктам; доля
субстрата, превратившегося в продукт под действием фермента; доля лиганда,
связанного с рецептором; детекция продуктов метаболизма соединения, меченного
радионуклидом, и другие аналогичные задачи. Поэтому очень важно, чтобы условия
приготовления и измерения образцов в конкретном эксперименте были одинаковыми,
тогда абсолютные погрешности в измерениях не окажут существенного влияния на биологические
результаты.
Наиболее ярко эту относительность измерений иллюстрирует
широкое использование минимониторов — приборов, предназначенных для определения
загрязнения поверхностей рабочих столов, одежды и т.д. Небольшие карманные
приборы, имеющие ионизационный счетчик (обычно это ионизационная камера или
счетчик Гейгера), оказались очень удобными для детекции меченного фосфором-32
фрагмента ДНК в агарозном геле или меченного йодом-125 белка в ПААГ и т.п.
Некоторые ухитряются по показаниям такого прибора оценивать включение меченых
предшественников биосинтеза в биополимеры после разделения продуктов реакции,
используют мониторы для измерения активности образцов на фильтрах, кусках
фильтровальной или хроматографической бумаги и даже в пробирках. Это удобно и
полезно для качественных и полуколичественных оценок, но следует помнить , что
приборные ошибки в таких измерениях могут быть очень значительными и достигать
200—300%.
Жидкостные сцинтилляционные счетчики уже многие годы остаются главным инструментом для количественного измерения радионуклидов в life science. Несмотря на разнообразие конструкций, с точки зрения пользователя, все они измеряют активность образцов, помещенных в специальный стеклянный или пластиковый флакон и заполненный жидким сцинтиллятором. Поскольку измерение активности сводится к подсчету вспышек света, жидкость во флаконе должна быть прозрачная для счета и гомогенная по составу. Все отклонения от этого требования снижают эффективность счета, причем иногда существенно. Образование осадка или двухфазной несмешивающейся жидкой системы, наличие образцов биологических тканей или фильтровальных материалов — все эти факторы снижают эффективность счета. То же самое касается добавок многих химических веществ: кислот, щелочей, концентрированных растворов сахаров, солей, мочевины и многое другое. Особенно это касается измерений трития, где разница в эффективности счета для гомогенного, почти идеального, образца и образца, нанесенного на хроматографический сорбент, может быть в 10÷30 раз и даже больше. Это необходимо учитывать, если при составлении баланса по активности вдруг куда-то исчезнет часть радиоактивного материала или откуда-то внезапно появится "лишнее".