где Zкзmax - максимальное сопротивление при коротком замыкании на шинах смежной подстанции;
Zкзmax = 2 × (Z2 × lca + Z1 × lсв), Ом; (76)
Расчет:
Определяем сопротивление тяговой подстанции и внешней сети по формуле (65) :
5.07 Ом;
Z1 =Z2 == 0.302 Ом;
Согласно выражению (67):
Zвх = 0,302 × 20 = 6,04 Ом;
Сопротивление срабатывания первой ступени защиты определим по формуле (66)
Zсзi = 0,8 × 6,04 = 4,832 Ом;
Выбранное сопротивление проверяем на селективность по отношению к токам нагрузки фидера, используя выражение (68)
Минимальное сопротивление определим по формуле (69):
Zнmin = 25000 / 1497.2 = 16,7 Ом;
5,1012,525 Ом;
Минимальное напряжение при коротком замыкании в конце линии по формуле(71):
В;
Напряжение перевода в токовую отсечку по формуле (70):
Uсзто = 6727.72 / 1,2 = 5606.43 В;
Максимальный ток короткого замыкания в конце линии по формуле (73):
А;
Ток срабатывания токовой отсечки по формуле (72):
Iсзуто= кн × Iкзmax = 1.2 × 2599 = 3118.8 А ;
Проверяем ток срабатывания защиты на селективность по отношению к токам нагрузки по формуле (74):
Условие выполняется
Сопротивление срабатывания второй ступени защиты. Максимальное сопротивление короткого замыкания на шинах смежной подстанции определим по формуле (76):
Zкзmax = 2 × (0,302 × 20 + 0,302 × 20) = 24.16 Ом;
Сопротивление срабатывания второй ступени защиты по формуле (75):
Zсз|| = 24,16 × 1,5 = 36,24 Ом;
Вывод: электронная защита фидера контактной сети полностью удовлетворяет условиям нормальной работы, так как она надёжно отстроена от минимального сопротивления нагрузки и максимальных токов нагрузки фидеров для узловой схемы.
9. РАСЧЕТ РЕАКТИВНОГО ЭЛЕКТРОПОТРЕБЛЕНИЯ РАСЧЕТНОЙ ТЯГОВОЙ ПОДСТАНЦИИ, МОЩНОСТЬ УСТАНОВКИ ПАРАЛЛЕЛЬНОЙ
КОМПЕНСАЦИИ И ЕЁ ПАРАМЕТРЫ
Рис.2. Схема включения компенсирующей установки на тяговой подстанции.
Q = U×I×sin(37º)
P = U×I× cos(37º)
9.1 Определение реактивной мощности плеч питания:
Q| = 27,5 × 412 × sin(37º) = 6818.56 кВ×Ар;
Q|| = 27,5 × 465.8 × sin (37º) = 7708.95 кВ×Ар;
9.2 Определение активной мощности плеч питания
P| = 27,5 × 412 × cos(37º) = 9048.54 кВт;
P|| = 27,5 × 465.8 × cos(37º) = 10230.12 кВт;
9.3. Определение экономического значения реактивной мощности
tg(φэ) = 0,25
Qэ = tg(φэ)×P кВ×Ар
Qэ| = 0,25 × 9048.54 = 2262.135 кВ×Ар;
Qэ|| = 0,25 × 10230.12 = 2557.53 кВ×Ар;
9.4 Мощность, подлежащая компенсации
Qку = Q - Qэ
Qку| = 6818.56 – 2262.135 = 4556.425 кВ×Ар
Qку|| = 7708.95 – 2557.53 = 5151.42 кВ×Ар;
9.5 Ориентировочное значение установленной мощности КБ
Qуст = Qку / kg;
kg = 0,5;
Qуст| = 2 × 4556.425 = 9112.85 кВ×Ар;
Qуст|| = 2 × 5151.42 = 10302.84 кВ×Ар;
9.6 Количество последовательно включенных конденсаторов:
M = [ Uтс / Uкн ] × 1,1 × 1,05 × 1,15 × 1,15
где 1,1 - коэффициент, учитывающий номинальный разброс;
Uкн - номинальное напряжение 1-го конденсатора = 1,05 кВ;
1,15 – коэффициент, учитывающий увеличение напряжения на КБ от индуктивности защитного реактора;
1,15 - коэффициент, учитывающий дополнительный нагрев конденсаторов токами внешних гармоник и солнечной радиации;
М = 27500 / 1050 × 1,53 = 40 шт;
9.7 Мощность одной последовательной цепи
Q1уст = 40 × (50 , 60 , 75 , 125) = 2000 , 2400 , 3000 , 5000 кВ×Ар;
Количество параллельных ветвей в КБ:
N = Qуст / ( Qкн × M )
|
I плечо |
II плечо |
50 60 75 125 |
N = 9112.85 / 2000 = 4,556 = 5 шт; N = 9112.85 / 2400 =3.797 = 4 шт; N = 9112.85 / 3000 =3.038 = 3 шт; N = 9112.85 / 5000 = 1.823 = 2 шт; |
N = 10302,84 / 2000 = 5.151 = 6 шт; N = 10302,84 / 2400 = 4.293 = 5 шт; N = 10302,84 / 3000 = 3.434 = 4 шт; N = 10302,84 / 5000 = 2.061 = 3 шт; |
125 N = 2 шт. |
50 N = 5 шт. |
Для 1-ого плеча питания: КЭК - 1,05 -125
Для 2-ого плеча питания: КЭК - 1,05 -125
9.8 Параметры КБ:
Iкн = Qкн / Uкн;
Xкн = Uкн² / Qкн;
;
Хкб = Хкн × М / N;
Cкб = Скн × N / M;
I плечо |
II плечо |
Iкн = 125000 / 1050 = 119,0 A; Xкн=1050² / 125000 = 8,82 Oм; мкФ; Xкб = 8,82 × 40 / 2 = 176,40 Ом; Cкб = 360,9 × 2 / 40 = 18,0 мкФ; |
Ikн= 75000 / 1050 = 71.43 A; Xкн=1050² / 75000 = 14.7 Oм; мкФ; Xкб = 14.7 × 40 / 4 = 147 Ом; Скб = 147 × 4 / 40 = 14.7 мкФ; |
9.9 Индуктивность реактора:
I плечо |
II плечо |
; LPср = (LP1 + LP2) / 2 ; ; мГн; LРср = (83,3+ 77.2) / 2 = 80,25 мГн; |
; ; LРср = (101.962+ 94.549) / 2 = 98.255 мГн; |
Lзр - 1 - 107 2 - 99 3 - 91 4 - 83 5 - 75 |
|
Выбираем один реактор с L = 83мГн и положением ПБВ в 4 ступени: Гц; |
Выбираем один реактор c L =99 мГн и положением ПБВ в 2 ступени: Гц; |
9.10 Параметры КУ:
Xзр = 2×p×f × Lзр
Хку = Хкб - Хзр;
;
;
Qуст = Qкб × М × N;
I плечо |
II плечо |
Хзр = 2×π × 50 × 83 / 1000 = 26.08 Ом; Хку = 176,40 - 26,08 = 150,32 Ом; Iку = 27500 / 150,32 = 182.94 А; Qп = 27,5² / 150,32 = 5.03 МВ×Ар; Qуст = 125 × 40 × 2 / 1000=10 МВ×Ар; |
Хзр = 2×π × 50 × 99 / 1000 = 31.1 Ом; Хку = 147 – 31.1 = 115.9 Ом; Iку = 27500 / 115.9 = 237.27 А; Qп = 27,5² / 115,9 = 6.53 МВ×Ар; Qуст = 50 × 40 × 5 / 1000 =10 МВ×Ар; |
9.11 коэффициент использования КБ
kq = Qп / Qуст
Iикб = Iкб × N
kи = Iикб / Iку
Uакб = M × Uкн
Uкб = Iикб × Хкб
I плечо |
II плечо |
kq = 5.03 / 10 = 0.503; Iикб = 119.0 × 2 = 238 А; kи = 238 / 182.94 = 1.3; Uакб = 40 × 1050 = 42000 В; Uкб = 238 × 176.40 = 41983.2 В; |
kq = 6.53 / 10 = 0.653; Iикб = 71,43 × 5 = 357.15 А; kи = 357.15 / 237.27 = 1.5; Uакб = 40 × 1050 = 42000 В; Uкб = 357.15 × 147 = 52501.05 В; |
9.12 Увеличение напряжения в точках включения
, Ом;
Ом;
DU = Iикб ×Хсум
ΔU| = 238 × 1.15 = 273.7 В;
ΔU|| = 357.15 × 1.15 = 410.72 В;
Определение стоимости активной и реактивной энергии за год
Wp =(9048.5 + 10230.12) × 8760 = 168 880 711.2 кВт×ч;
cp = 0.09 руб/кВт×ч;
Cp = 168 880 711.2 × 0.95 × 0.09 = 14 439 300.81 руб;
Wq = (6818.56 + 7708.95) × 8760 = 127 260 900.0 кВАр;
cq = 0.09 × 0.1 = 0.009 руб/кВт×ч
Cq = 127 260 900.0 × 0.95 × 0.009 = 1 571 382.5 руб
Стоимость реактивной энергии скомпенсированной с помощью установок компенсации:
Сqк = (4556.425 + 5151.42 ) × 0,95 × 8760 × 0,009 = 727 098.17 руб
СПИСОК ЛИТЕРАТУРЫ
1. Марквардт К.Г. "Электроснабжение электрифицированных ж.д." М.: "Транспорт"
2. Справочник по электроснабжению железных дорог. М.: " Транспорт" 1980 г.
3. Справочник по электроснабжению железных дорог под редакцией Марквардта К.Г.
4. Задание на курсовой проект с методическими указаниями "Электроснабжение электрических железных дорог", Москва – 1990.