|выходить, но болезнь не отступала. Не| | |
|имея средств заплатить за лечение и | | |
|уход, больной перед смертью попросил | | |
|хозяина дома нарисовать у входа | | |
|пятиконечную звезду, объяснив, что по| | |
|этому знаку найдутся люди, которые | | |
|вознаградят его. И на самом деле, | | |
|через некоторое время один из | | |
|путешествующих пифагорейцев заметил | | |
|звезду и стал расспрашивать хозяина | | |
|дома о том, каким образом она | | |
|появились у входа. После рассказа | | |
|хозяина гость щедро вознаградил его. | | |
|Пентаграмма была хорошо известна и в | | |
|Древнем Египте. Но непосредственно | | |
|как эмблема здоровья она была принята| | |
|лишь в Древней Греции. | | |
|В настоящее время существует | | |
|гипотеза, что пентаграмма – первичное| | |
|понятие, а «золотое сечение» | | |
|вторично. Пентаграмму никто не | | |
|изобретал, ее только скопировали с | | |
|натуры. Вид пятиконечной звезды имеют| | |
|пяти-лепестковые цветы плодовых | | |
|деревьев и кустарников, морские | | |
|звезды. Те и другие создания природы | | |
|человек наблюдает уже тысячи лет. | | |
|Поэтому естественно предположить, что| | |
|геометрический образ этих объектов – | | |
|пентаграмма – стала известна раньше, | | |
|чем «золотая» пропорция. | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
|Для нахождения отрезков золотой | | |
|пропорции восходящего и нисходящего | | |
|рядов можно пользоваться | | |
|пентаграммой. | | |
|[pic] | | |
|Рис. 5. Построение правильного | | |
|пятиугольника и пентаграммы | | |
|Для построения пентаграммы необходимо| | |
|построить правильный пятиугольник. | | |
|Способ его построения разработал | | |
|немецкий живописец и график Альбрехт | | |
|Дюрер (1471...1528). Пусть O – центр | | |
|окружности, A – точка на окружности и| | |
|Е – середина отрезка ОА. | | |
|Перпендикуляр к радиусу ОА, | | |
|восставленный в точке О, пересекается| | |
|с окружностью в точке D. Пользуясь | | |
|циркулем, отложим на диаметре отрезок| | |
|CE = ED. Длина стороны вписанного в | | |
|окружность правильного пятиугольника | | |
|равна DC. Откладываем на окружности | | |
|отрезки DC и получим пять точек для | | |
|начертания правильного пятиугольника.| | |
|Соединяем углы пятиугольника через | | |
|один диагоналями и получаем | | |
|пентаграмму. Все диагонали | | |
|пятиугольника делят друг друга на | | |
|отрезки, связанные между собой | | |
|золотой пропорцией. | | |
|Каждый конец пятиугольной звезды | | |
|представляет собой золотой | | |
|треугольник. Его стороны образуют | | |
|угол 36° при вершине, а основание, | | |
|отложенное на боковую сторону, делит | | |
|ее в пропорции золотого | | |
|сечения. | | |
|[pic] | |Проводим прямую АВ. От точки А|
|Рис. 6. Построение золотого | |откладываем на ней три раза |
|треугольника | |отрезок О произвольной |
| | |величины, через полученную |
| | |точку Р проводим перпендикуляр|
| | |к линии АВ, на перпендикуляре |
| | |вправо и влево от точки Р |
| | |откладываем отрезки О. |
| | |Полученные точки d и d1 |
| | |соединяем прямыми с точкой А. |
| | |Отрезок dd1 откладываем на |
| | |линию Ad1, получая точку С. |
| | |Она разделила линию Ad1 в |
| | |пропорции золотого сечения. |
| | |Линиями Ad1 и dd1 пользуются |
| | |для построения «золотого» |
| | |прямоугольника. |
| | | |
|5. История золотого сечения |
| |
|Принято считать, что понятие о золотом делении ввел в научный обиход|
|Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть |
|предположение, что Пифагор свое знание золотого деления |
|позаимствовал у египтян и вавилонян. И действительно, пропорции |
|пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из |
|гробницы Тутанхамона свидетельствуют, что египетские мастера |
|пользовались соотношениями золотого деления при их создании. |
|Французский архитектор Ле Корбюзье нашел, что в рельефе из храма |
|фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, |
|пропорции фигур соответствуют величинам золотого деления. Зодчий |
|Хесира, изображенный на рельефе деревянной доски из гробницы его |
|имени, держит в руках измерительные инструменты, в которых |
|зафиксированы пропорции золотого деления. |
|Греки были искусными геометрами. Даже арифметике обучали своих детей|
|при помощи геометрических фигур. Квадрат Пифагора и диагональ этого |
|квадрата были основанием для построения динамических |
|прямоугольников. |
|[pic] |
|Рис. 7. Динамические прямоугольники |
|Платон (427...347 гг. до н.э.) также знал о золотом делении. Его |
|диалог «Тимей» посвящен математическим и эстетическим воззрениям |
|школы Пифагора и, в частности, вопросам золотого деления. |
|В фасаде древнегреческого храма Парфенона присутствуют золотые |
|пропорции. При его раскопках обнаружены циркули, которыми |
|пользовались архитекторы и скульпторы античного мира. В Помпейском |
|циркуле (музей в Неаполе) также заложены пропорции золотого деления.|
| |
|[pic] |
|Рис. 8. Античный циркуль золотого сечения |
|В дошедшей до нас античной литературе золотое деление впервые |
|упоминается в «Началах» Евклида. Во 2-й книге «Начал» дается |
|геометрическое построение золотого деления После Евклида |
|исследованием золотого деления занимались Гипсикл (II в. до н.э.), |
|Папп (III в. н.э.) и др. В средневековой Европе с золотым делением |
|познакомились по арабским переводам «Начал» Евклида. Переводчик |
|Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. |
|Секреты золотого деления ревностно оберегались, хранились в строгой |
|тайне. Они были известны только посвященным. |
|В эпоху Возрождения усиливается интерес к золотому делению среди |
|ученых и художников в связи с его применением как в геометрии, так и|
|в искусстве, особенно в архитектуре Леонардо да Винчи, художник и |
|ученый, видел, что у итальянских художников эмпирический опыт |
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12