|большой, а знаний мало. Он задумал и начал писать книгу по |
|геометрии, но в это время появилась книга монаха Луки Пачоли, и |
|Леонардо оставил свою затею. По мнению современников и историков |
|науки, Лука Пачоли был настоящим светилом, величайшим математиком |
|Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником|
|художника Пьеро делла Франчески, написавшего две книги, одна из |
|которых называлась «О перспективе в живописи». Его считают творцом |
|начертательной геометрии. |
|Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г|
|по приглашению герцога Моро он приезжает в Милан, где читает лекции |
|по математике. В Милане при дворе Моро в то время работал и Леонардо|
|да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли |
|«Божественная пропорция» с блестяще выполненными иллюстрациями, |
|ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была |
|восторженным гимном золотой пропорции. Среди многих достоинств |
|золотой пропорции монах Лука Пачоли не преминул назвать и ее |
|«божественную суть» как выражение божественного триединства бог сын,|
|бог отец и бог дух святой (подразумевалось, что малый отрезок есть |
|олицетворение бога сына, больший отрезок – бога отца, а весь отрезок|
|– бога духа святого). |
|Леонардо да Винчи также много внимания уделял изучению золотого |
|деления. Он производил сечения стереометрического тела, |
|образованного правильными пятиугольниками, и каждый раз получал |
|прямоугольники с отношениями сторон в золотом делении. Поэтому он |
|дал этому делению название золотое сечение. Так оно и держится до |
|сих пор как самое популярное. |
|В то же время на севере Европы, в Германии, над теми же проблемами |
|трудился Альбрехт Дюрер. Он делает наброски введения к первому |
|варианту трактата о пропорциях. Дюрер пишет. «Необходимо, чтобы тот,|
|кто что-либо умеет, обучил этому других, которые в этом нуждаются. |
|Это я и вознамерился сделать». |
|Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во |
|время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает |
|теорию пропорций человеческого тела. Важное место в своей системе |
|соотношений Дюрер отводил золотому сечению. Рост человека делится в |
|золотых пропорциях линией пояса, а также линией, проведенной через |
|кончики средних пальцев опущенных рук, нижняя часть лица – ртом и |
|т.д. Известен пропорциональный циркуль Дюрера. |
|Великий астроном XVI в. Иоган Кеплер назвал золотое сечение одним из|
|сокровищ геометрии. Он первый обращает внимание на значение золотой |
|пропорции для ботаники (рост растений и их строение). |
|Кеплер называл золотую пропорцию продолжающей саму себя «Устроена |
|она так, – писал он, – что два младших члена этой нескончаемой |
|пропорции в сумме дают третий член, а любые два последних члена, |
|если их сложить, дают следующий член, причем та же пропорция |
|сохраняется до бесконечности». |
|Построение ряда отрезков золотой пропорции можно производить как в |
|сторону увеличения (возрастающий ряд), так и в сторону уменьшения |
|(нисходящий ряд). |
|Если на прямой произвольной длины, отложить отрезок m, рядом |
|откладываем отрезок M. На основании этих двух отрезков выстраиваем |
|шкалу отрезков золотой пропорции восходящего и нисходящего |
|рядов: |
| |
|[pic] |
|Рис. 9. Построение шкалы отрезков золотой пропорции |
| |
|В последующие века правило золотой пропорции превратилось в |
|академический канон и, когда со временем в искусстве началась |
|борьба с академической рутиной, в пылу борьбы «вместе с водой |
|выплеснули и ребенка». Вновь «открыто» золотое сечение было в |
|середине XIX в. В 1855 г. немецкий исследователь золотого сечения |
|профессор Цейзинг опубликовал свой труд «Эстетические |
|исследования». С Цейзингом произошло именно то, что и должно было |
|неминуемо произойти с исследователем, который рассматривает |
|явление как таковое, без связи с другими явлениями. Он |
|абсолютизировал пропорцию золотого сечения, объявив ее |
|универсальной для всех явлений природы и искусства. У Цейзинга |
|были многочисленные последователи, но были и противники, которые |
|объявили его учение о пропорциях «математической эстетикой». |
|[pic] |
|Рис. 10. Золотые пропорции в частях тела человека |
| |
| | |Цейзинг проделал колоссальную |
|[pic] | |работу. Он измерил около двух |
|Рис. 11. Золотые пропорции в | |тысяч человеческих тел и пришел|
|фигуре человека | |к выводу, что золотое сечение |
| | |выражает средний статистический|
| | |закон. Деление тела точкой пупа|
| | |– важнейший показатель золотого|
| | |сечения. Пропорции мужского |
| | |тела колеблются в пределах |
| | |среднего отношения 13 : 8 = |
| | |1,625 и несколько ближе |
| | |подходят к золотому сечению, |
| | |чем пропорции женского тела, в |
| | |отношении которого среднее |
| | |значение пропорции выражается в|
| | |соотношении 8 : 5 = 1,6. У |
| | |новорожденного пропорция |
| | |составляет отношение 1 : 1, к |
| | |13 годам она равна 1,6, а к 21 |
| | |году равняется мужской. |
| | |Пропорции золотого сечения |
| | |проявляются и в отношении |
| | |других частей тела – длина |
| | |плеча, предплечья и кисти, |
| | |кисти и пальцев и т.д. |
| | | |
| | | |
|Справедливость | | | | | | | | | | | | | | |
|своей теории | | | | | | | | | | | | | | |
|Цейзинг проверял на| | | | | | | | | | | | | | |
|греческих статуях. | | | | | | | | | | | | | | |
|Наиболее подробно | | | | | | | | | | | | | | |
|он разработал | | | | | | | | | | | | | | |
|пропорции Аполлона | | | | | | | | | | | | | | |
|Бельведерского. | | | | | | | | | | | | | | |
|Подверглись | | | | | | | | | | | | | | |
|исследованию | | | | | | | | | | | | | | |
|греческие вазы, | | | | | | | | | | | | | | |
|архитектурные | | | | | | | | | | | | | | |
|сооружения | | | | | | | | | | | | | | |
|различных эпох, | | | | | | | | | | | | | | |
|растения, животные,| | | | | | | | | | | | | | |
|птичьи яйца, | | | | | | | | | | | | | | |
|музыкальные тона, | | | | | | | | | | | | | | |
|стихотворные | | | | | | | | | | | | | | |
|размеры. Цейзинг | | | | | | | | | | | | | | |
|дал определение | | | | | | | | | | | | | | |
|золотому сечению, | | | | | | | | | | | | | | |
|показал, как оно | | | | | | | | | | | | | | |
|выражается в | | | | | | | | | | | | | | |
|отрезках прямой и в| | | | | | | | | | | | | | |
|цифрах. Когда | | | | | | | | | | | | | | |
|цифры, выражающие | | | | | | | | | | | | | | |
|длины отрезков, | | | | | | | | | | | | | | |
|были получены, | | | | | | | | | | | | | | |
|Цейзинг увидел, что| | | | | | | | | | | | | | |
|они составляют ряд | | | | | | | | | | | | | | |
|Фибоначчи, который | | | | | | | | | | | | | | |
|можно продолжать до| | | | | | | | | | | | | | |
|бесконечности в | | | | | | | | | | | | | | |
|одну и в другую | | | | | | | | | | | | | | |
|сторону. Следующая | | | | | | | | | | | | | | |
|его книга имела | | | | | | | | | | | | | | |
|название «Золотое | | | | | | | | | | | | | | |
|деление как | | | | | | | | | | | | | | |
|основной | | | | | | | | | | | | | | |
|морфологический | | | | | | | | | | | | | | |
|закон в природе и | | | | | | | | | | | | | | |
|искусстве». В 1876 | | | | | | | | | | | | | | |
|г. в России была | | | | | | | | | | | | | | |
|издана небольшая | | | | | | | | | | | | | | |
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12