Комплексный анализ рыбной отрасли

Судоремонтная

296000,20

291598,07

272025,21

282447,56

237135,95

296000,20

Пищевая

403250,75

375866,90

369337,88

302166,97

281985,13

403250,75

Машино и приборо-строение

477435,26

436090,78

407872,90

310504,67

303564,16

477435,26


2.6. Построение магистральной модели


Модели межотраслевого баланса Леонтьева позво­ляют планировать траекторию функционирования производствен­ного сектора экономики. Так, в рамках динамической модели Леонтьева  синхронно с траекторией валовых выпусков строятся сопутствующие траектории основных про­изводственных фондов и конечных спросов .

С научной и практической точки зрения важно существование в рамках модели сбалансированной траектории, такой, что

 при t = 0, 1, 2, ...

λ - const, λ > 1.

При этом траектории  и  , сопутствующие сбалансированной траектории, тоже являются сбалансированными и обладают тем же темпом роста λ, то есть

Возникают два вопроса:

1) Существует ли в СММБ и ДММБ сба­лансированная траектория , темп роста λ, которой максимален?

2) Если ответ на первый вопрос положителен, то чем траектория  лучше любой другой «хорошей» (в некотором смысле) траектории?

Ответ на первый вопрос применительно к ДММБ несложно дать тотчас: константа λ в сбалансированной траектории единственна (это следует из ме­тодики ее определения, а поэтому траектория является сбалансированной траекторией с максималь­ным темпом роста λ. Уравнение элементов этой траектории выглядит так:

Сложнее обстоит дело с ответом на второй вопрос, поскольку этот ответ ба­зируется на специальной теории, развитой в рамках математической экономики для исследования производственного сектора при помощи общих теоретико-аналитических моделей «затраты-выпуск». Знакомство с важнейшими поня­тиями и моделями этой теории составляет содержание данного пункта. В итоге будет получен ответ на второй вопрос в форме точного математического утвер­ждения. Качественно же суть этого утверждения такова: при определенных условиях любая «хорошая» (в некотором смысле) траектория

 экономики лишь только на начальном и конечном временном интервале, возможно, отклоняется от магистрали . Именно данное свойство магистралей обусловливает интерес к тем моделям «затраты-выпуск», в которых магистрали существуют. Модели «затраты-выпуск», в которых существуют магистрали, принято называть магистральными.

Первую магистральную модель построил в 30-х годах 20-го века выдаю­щийся американский математик Дж. фон Нейман. Эта модель, которую называ­ют моделью расширяющейся экономики фон Неймана, отказала глубокое воздействие на математическую экономику. Под­черкнем, что СММБ Леонтьева суть частный случай модели фон Неймана.

При обсуждении модели потребуется формализация понятий производства и производственного процесса.

Под производством понимается преобразование конкрет­ных количеств затрачиваемых продуктов в некоторые конкретные количества выпускаемых продуктов. Такое преобразование осуществляется при помощи заданной технологии Т. Технологическим (или производственным) процессом называется пара (, ), состоящая из конкретного вектора  затрат и конкретно­го вектора  выпусков.

Рассмотрим некоторый технологический процесс (ТП) (, ). Чтобы под­черкнуть, что его компоненты  и связаны технологией Т, будем, при необ­ходимости, обозначать ТП еще и так: (Т).

Пусть Т - какая-то заданная технология. В общем случае она позволяет реа­лизовать некоторое множество М конкретных и различных ТП, как-то: (, ), (, ),  ... Все эти ТП, собранные в множество М, принято именовать технологи­ческим множеством (ТМ) производственного сектора экономики. Так что

Модель Гейла

Моделью Гейла называется ТМ, элементы  которого удовлетво­ряют 4-м условиям, как то:

1.            Если , то =0 . Это естественное свойство принято называть не­осуществимостью «рога изобилия».

2.            М представляет собой выпуклый конус в .

3.            Для каждого номера i=1,2, ..., n, где n — количество компонент векторов  и , существует ТП  такой, что компонента  вектора положительна. Другими словами, свойство 3 означает, что каждый из n про­дуктов может быть произведен, так что невоспроизводимые ресурсы продуктами в модели Гейла не являются.

4.            Множество М замкнуто в . Это свойство, означающее, что множество М содержит все свои предельные точки, имеет сугубо математическую подоплеку, доставляющую удобство в аналитических исследованиях.

Пусть М — модель Гейла. В рамках модели М естественно задается динамика развития экономики. Пусть ; будем полагать, что вектор  потребля­ется (в процессе производства) в текущий момент времени t, а вектор  произ­водится в следующий момент (t+1). Тогда характеризует состояние экономики (в смысле запаса продуктов) в текущий момент t. Аналогично, вектор характеризует состояние экономики в следующий момент (t + 1), причем пара . Далее, вектор будет потребляться в мо­мент (t + 1), а в момент (t + 2) окажется произведенным вектор  и т.д. Та­ким образом, осуществляется динамическое движение экономики

Это движение самоподдерживающееся, поскольку какой-либо приток извне, полагаем, отсутствует.

Последовательность  называется допусти­мой траекторией в модели Гейла М на конечном интервале времени Т, если при t = 0, 1, 2, ..., T-1 справедливо отношение . Если Т бесконечно, то тра­ектория   допустима на бесконечном интервале времени. Не равная тождественно нулю допустимая траектория называется траекторией сба­лансированного роста, если при t = 0, 1, 2,... справедливо равенство

,

в котором λ - положительная константа, темп роста сбалансированной траекто­рии. Сбалансированная траектория  называется магистралью, если ее темп роста λ максимален.

Как следует из данного определения, магистраль, если она существует, принадлежит при всех t = 0, 1,2,... лучу

.

Этот луч принято называть неймановским лучом.

Понятие темпа роста определено выражением  применительно к сба­лансированным траекториям модели Гейла.

Рассмотрим сначала специальное подмножество МоМ тривиальных ТП мо­дели Гейла, то есть таких процессов , у которых . Можно пока­зать (см. задачу 18 в конце гл. 9), пользуясь определением модели Гейла, что подмножество Мо состоит из одного элемента (,). Его темп роста определяем следующим образом

λ(,) = 0.

Пусть теперь - любой нетривиальный ТП; его темп роста определяется так:

В правой части последнего равенства минимум берется по всем положитель­ным компонентам вектора .

Рассмотрим 2 последних выражения (9.6.16)-(9.6.17), задающих определение темпа роста любого ТП , или говоря иначе, определяющие на множестве М скалярную неотрицательную функцию . Каковы свойства этой функции? Отметим три из них.

1. Функция является положительно однородной функцией нулевой степени, то есть

,

при любом (> 0).

2. Значение функции удовлетворяет неравенству

3. В множестве М существует такой ТП , что

причем справедливо неравенство

.

Итак, для фармацевтической отрасли представлены данные по валовому выпуску и осуществленным соответствующим затратам для семи лет. Сведем эти данные в таблицу:



Материальные затраты, x

Выпуск, y

1

87573

101964

2

95515,9

191487

3

109837,86

166431

4

71931

120408

5

75687,8

92829

6

72835,49

83607

7

80921,5

101964


Графически это будет представлено так:

Неймановский луч, определяемый по формуле ,

выглядит на графике следующим образом.

Тогда из представленного соотношения найдем темп роста экономики:

Константа λ в сбалансированной траектории единственна (это следует из ме­тодики ее определения, а поэтому траектория является сбалансированной траекторией с максималь­ным темпом роста λ. Уравнение элементов этой траектории выглядит так:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать