Комплексный анализ рыбной отрасли

                  

Определитель матрицы парных коэффициентов корреляции между факторами равен 0,2, что достаточно близко к 0, следовательно, между оставшимися факторами наблюдается мультиколлинеарность.

Продолжим удаление факторов, являющихся самыми неинформативными, регулярно сопоставляя значения множественного коэффициента корреляции и детерминации (который оценивает качество построенной модели в целом) и проверяя значимость уравнения регрессии.


В следующих таблицах представлены результаты регрессионного анализа после исключения факторов х1, х5, х8, х10.

ВЫВОД ИТОГОВ




Регрессионная статистика

Множественный R

0,999530603

R-квадрат

0,999061427

Нормированный R-квадрат

0,995307133

Стандартная ошибка

29,05134237

Наблюдения

6


Дисперсионный анализ






 

df

SS

MS

F

Значимость F

Регрессия

4

898372,4

224593,0982

266,111717

0,045939839

Остаток

1

843,9805

843,9804935



Итого

5

899216,4





 

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Y-пересечение

30538,08691

1623,46624

18,81042319

0,03381216

x1

-26,94728304

1,07745261

-25,01017937

0,02544087

x5

0,007316604

0,00087595

8,352752758

0,07585572

x8

-242,9957642

101,983594

-2,382694665

0,25297163

x10

-81,66075105

21,2523898

-3,842426757

0,16208611


         По данным вычислениям уравнение регрессии будет иметь вид:

ŷ =30538,09-26,95*x1+0,007*x5-242.996*x8-81,66*x10.


б) Оценка практической значимости и надежности полученного уравнения.


Для оценки значимости параметров уравнения используется t- критерий Стьюдента. С помощью t-критерия Стьюдента для каждого из оставшихся факторов можно выяснить, формируется ли он под воздействием случайных величин (является ли фактор информативным).

Его можно определить как:

                                                       ,

где - частный F- критерий Фишера, который определяется по формуле:

,

где - множественный коэффициент детерминации всего комплекса р факторов с результатом;

- тот же показатель детерминации, но без введения в модель фактора xi.

n- число наблюдений;

m- число параметров в модели (без свободного члена).

При этом определяются две гипотезы:

Н0 - коэффициент статистически незначим;

Н1 - коэффициент статистически значим.

Затем сравнивается факторное значение t- критерия, т.е. вычисленное, и табличное, определенное по специальной таблице t-критерия. Если факторное значение окажется больше табличного, то гипотеза Н0 отклоняется и коэффициент признается статистически значимым.

В полученном уравнении  tтабл: n-m-1=7-4-1=2,  tтабл =4,3

Следовательно коэффициенты при факторах х1, х5  являются статистически значимыми, для них значение t-критерия больше 4,3, следовательно, можно сделать вывод о существенности данных параметров, которые формируются под воздействием неслучайных причин, а коэффициенты при х8, х10, соответственно, незначимы.

P-значение характеризует вероятность случайного характера формирования параметра. Из рассчитанных значений видно, что наибольшей вероятностью случайной природы факторов обладают b8 , поэтому этот фактор можно исключить из уравнения регрессии. Также удаляем фактор b10 (так как он не является значимым).

Проведём анализ данных для оставшихся двух факторов:


ВЫВОД ИТОГОВ



Регрессионная статистика

Множественный R

0,99242

R-квадрат

0,984897

Нормированный R-квадрат

0,974828

Стандартная ошибка

67,28282

Наблюдения

6



Дисперсионный анализ





 

df

SS

MS

F

Значимость F

Регрессия

2

885635,4

442817,7

97,8175049

0,001856086

Остаток

3

13580,93

4526,978



Итого

5

899216,4





 

Коэффициенты

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать