Глава 2
2.1. Эконометрический анализ выпуска рыбной продукции. Множественная регрессия и корреляция.
Отбор факторов для построения множественной регрессии.
На любой экономический показатель чаще всего оказывает влияние не один, а несколько факторов. В данной работе будет исследоваться экономический процесс, в котором также учитывается влияние нескольких факторов на результат.
Для отбора факторов используется наиболее распространённый метод исключения, то есть из всего набора факторов происходит их отсев.
Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям:
· Они должны быть количественно измеримы.
· Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.
Отбор факторов производится на основе качественного теоретико-экономического анализа. Однако теоретический анализ часто не позволяет однозначно ответить на вопрос о количественной взаимосвязи рассматриваемых признаков и целесообразности включения фактора в модель. Поэтому отбор факторов обычно осуществляется в две стадии: на первой подбираются факторы исходя из сущности проблемы; на второй - на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.
Данные, характеризующие рассматриваемую проблему, представлены в таблице. Статистические сведения приведены за 7 лет.
1999
2000
2001
2002
2003
2004
2005
y
2201
1913
1384
1067
961
1172
918
x1
736
730,5
719,7
740,1
748,6
744,9
745,9
x2
10,8
10,7
10,6
10,3
10,1
9,8
9,5
x3
148532
147501
146304
145649
144964
144168
143474
x4
114,9
115
114,4
112,6
111,6
112,5
111,3
x5
3167
3983,9
5325,8
6831
8900
10976,3
13667,8
x6
5807,5
7305,6
8934,6
10830,5
13243,2
16966,4
21597,9
x7
4901
4876
4795
4709
4602
4579
4457
x8
0,7
0,4
0,4
0,6
0,7
1,4
1,5
x9
23,7
29,7
36,7
36,1
43,2
61,6
78,4
x10
65,7
65,34
65,23
65,95
64,85
65,27
65,3
где у - производство рыбной продукции (минтай, судак, камбала, сельдь, палтус и т.д.), тонны;
х1 – численность персонала, тыс. человек;
х2 – число предприятий отлова рыбы, тысяч;
х3 - численность населения, тыс. чел;
х4 – число предприятий на государственном обеспечении, тысяч;
х5 - денежные доходы, млрд руб;
х6 - ВВП, млрд руб;
х7 - правоохранительных организаций, тысяч;
х8 – страхование производственных фондов, %;
х9 - инвестирование в рыболовную промышленность, млрд руб;
х10 – увеличение стоимости квот на отлавливаемую рыбу, %.
Присутствие лишних факторов приводит только к статистической незначимости параметров регрессии. Естественно, использовать все факторы в уравнении регрессии не удастся, так как число наблюдений невелико, и получить значимые параметры уравнения регрессии при таком количестве факторов невозможно. Их число должно быть сведено к минимуму.
Так как в данной экономической модели уже выделены факторы, оказывающие влияние на результат, то при отборе факторов для построения множественной регрессии воспользуемся методом исключения. В данном случае отбор факторов основывается на вычислении матрицы парных коэффициентов корреляции.
Коэффициенты интеркорреляции (т.е. корреляции между объясняющими переменными) позволяют исключить из модели дублирующие факторы.
Для того чтобы сделать выводы о влиянии экономических факторов на развитие лесного хозяйства, необходимо на основе данных, представленных в работе за семилетний период (с 1998 по 2004 гг.), составить модель множественной регрессии, которая бы описывала зависимость производство лекарств от всех вышеперечисленных факторов. Должны быть решены вопросы, связанные с выбранными факторными признаками и с видом применяемого уравнения регрессии. Далее следует рассмотреть влияние выбранных факторов на результат при наличии временной переменной. Совокупность выполненных работ позволит сформулировать выводы о взаимосвязях в изучаемой области.
Частный коэффициент корреляции отражает чистое влияние рассматриваемого фактора на результат, т.к. остальные факторы закрепляются на определенном уровне, т.е. являются постоянными.
Формула для расчета частного коэффициента корреляции, измеряющего влияние на у фактора хi при неизменном уровне других факторов, можно определить по формуле:
,
где - множественный коэффициент детерминации всего комплекса р факторов с результатом;
- тот же показатель детерминации, но без введения в модель фактора xi.
Парные коэффициенты корреляции вычисляются по формуле:
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15