- — то же, но для j-го направления;
- — нагрузка, обслуженная одним коммутатором g-го звена;
- — число коммутаторов g-го звена, доступных входящему выходу;
- — число коммутаторов (g+1)-го звена, доступных через свободные ПЛ одному из коммутаторов g-го звена.
В основном для расчета вероятности потерь в электронной АТС (системе коммутации массового обслуживания) применяется первая модель Эрланга. Рассмотрим её для следующих предположений:
- число направлений в КП произвольно;
- вызовы, поступающие на любое направление, образуют пуассоновский поток постоянной интенсивности с параметрами ;
- длительность занятия подчиняется экспоненциальному распределению с параметром m;
- вызов, не принятый к обслуживанию в момент поступления, теряется, не влияя на моменты поступления последующих вызовов;
- любой из Vj выходов направления доступен, когда он свободен для любого поступающего вызова;
- исходной для расчета является поступающая нагрузка;
- система коммутации находится в стационарном режиме.
При этих предположениях определяется стационарная вероятность того, что х линий направления заняты (х — положительное, целое):
(4.28)
где .
Для действительных положительных значений х = Vj известно интегральное представление:
(4.29)
С учетом пятого исходного предположения 4.27 переписываем в виде
(4.30)
Отметим, что пятое исходное предположение допускает применение модели к не блокирующим КП, в том числе многозвенным, для которых Рб = 0. Чаще всего для определения вероятности потерь в цифровой системе коммутации используют не первую модель Эрланга, а модуль Энгсета, поэтому рассмотрим для вычисления вероятности потерь в цифровой коммутационной системе модель Энгсета.
Для этого необходимо в вести исходные данные исходя из рисунка 4.1:
- число направлений в КП произвольно;
- параметр потока вызовов в направлении в момент занятости х входов пропорционален числу свободных источников, т.е.
где N — число источников вызовов (число входов в КП);
— интенсивность поступления вызова от свободного источника в j-м направлении;
- длительность занятия подчиняется экспоненциальному распределению с параметром m;
- вызов, не принятый к обслуживанию в момент поступления, теряется, не влияя на моменты поступления последующих вызовов;
- любой из Vj выходов направления доступен, когда он свободен для любого поступающего вызова;
- исходной для расчета является поступающая нагрузка;
- система коммутации находится в стационарном режиме.
Стационарная вероятность того, что х выходов направления окажутся занятыми:
(4.31)
где — биномиальный коэффициент.
Пусть — нагрузка, поступающая от одного источника в системе без потерь. С учетом пятого исходного предположения, что возможно применение модели к не блокирующим КП, в том числе многозвенным, для которых Рб=0, поэтому 4.2:
(4.32)
Для инженерных расчетов предполагается пользоваться первой формулой Эрланга при , в противном случае используют формулу Энгсета.
Для цифровой системы коммутации S-12 число входов в КП равно N = 17000, а Vj — число линий в одном направлении, тогда максимально в одном направлении на S-12 две линии ИКМ по 30 каналов в каждой, поэтому Vj = 60 линий. Подставив данные в условие получим: , т.е. условие не выполняется, т.к. число входов в КП больше числа линий в одном направлении, поэтому для определения вероятности потерь в цифровой коммутационной системе S-12 воспользуемся формулой Энгсета .
Для более точного вычисления вероятности потерь составим программу по формуле Энгсета и получим необходимые значения.
Программа вычисления вероятности потерь по формуле Энгсета в полнодоступном пучке линий при известной пуассоновской нагрузке второго рода А, емкости пучка V и числе источников нагрузки N, приведена ниже на языке Паскаль, затем даны результаты вычислений. Алгоритм программы и листинг программы приведены в приложении Д
Вывод: Таким образом при вычислении получилось, что вероятность потерь на АТС–72/79 S–12 составила E = 0, 99602 при заданных значениях:
АвознАТС72/79 =624,99 Эрл
V =3200 каналов
N=17000
Это говорит о том, что вероятность потерять вызов в цифровой коммутационной системе S–12 очень мала, что означает пропускная способность системы очень велика и она является практически не блокируемой системой.
4.4 Система ОКС-7
Основными преимуществами общеканальной системы сигнализации 7 являются:
– скорость - время установления соединения не превышает одной секунды;
– высокая производительность - один канал сигнализации способен одновременно обслуживать до тысячи разговорных каналов;
– экономичность - минимальное количество оборудования на коммутационной станции;
– надежность - возможность альтернативной маршрутизации в сети сигнализации;
– гибкость - возможность передачи любых данных (телефонии, цифровых сетей с интеграцией служб, сетей подвижной связи, интеллектуальных сетей и т.д.).
ОКС-7 на данный момент является системой, обладающей огромным потенциалом. Изначально в нее были заложены большие возможности для управления другими, еще не существующими услугами связи. Сейчас ОКС-7 является обязательным элементом следующих цифровых сетей связи:
– телефонной сети общего пользования (ТФОП, PSTN);
– цифровой сети с интеграцией служб (ЦСИС, ISDN);
– сети связи с подвижными системами (ССПС, PLMN);
– интеллектуальной сети (ИС, IN).
4.4.1 Расчет сигнальной нагрузки
Расчет сети сигнализации производится для определения объема оборудования, набора подсистем системы сигнализации ОКС-7.
Функционирование сети сигнализации должно осуществляться в соответствии с требованиями МСЭ-Т на следующие качественные характеристики:
– вероятность задержки сигнальной единицы на звене сигнализации более чем на 300 мс не должна превышать 10–4 (рекомендация МСЭ-Т Q.725);
– время простоя пучка маршрутов сигнализации не должно превышать 10 минут в год (рекомендация МСЭ-Т Q.706).
В соответствии с рекомендациями МСЭ-Т нормальной загрузкой звена сигнализации считается загрузка 0,2 Эрл. Обеспечить требования на допустимое время простоя можно путем применения различных вариантов избыточности структурных элементов сети.
В зависимости от структуры сети сигнализации и возможностей по реконфигурации сигнального оборудования достичь требуемой избыточности можно путем использования различных вариантов:
– избыточность оконечного оборудования;
– избыточность звеньев сигнализации внутри пучка;
– избыточность сигнальных маршрутов для каждого пункта назначения.
Для обеспечения надежности сети может применяться дублирование звеньев сигнализации.
Нагрузка на звено ОКС-7 равна:
(4.33)
где –число удачных вызовов в секунду, приходящихся на пучок каналов емкостью С; (4.34)
– число неудачных вызовов в секунду, приходящихся на пучок каналов емкостью С; (4.35)
С - число каналов, обслуживаемых конкретным звеном сигнализации;
А - средняя нагрузка на разговорный канал, Эрл;
пучок каналов емкостью С;
Мeff - среднее число сигнальных единиц, которыми обмениваются пункты сигнализации для обслуживания удачных вызовов.
Mineff - среднее число сигнальных единиц, которыми обмениваются пункты;
Сигнализации для обслуживания неудачных вызовов;
Leff –средняя длина сигнальных единиц для удачных вызовов, байт;
L ineff - средняя длина сигнальных единиц для неудачных вызовов, байт;
Т eff - среднее время занятия канала для удачных вызовов, сек.;
Т ineff - среднее время занятия канала для неудачных вызовов, сек.;
Хeff - число от “0” до “1” являющиеся отношением количества удачных вызовов к общему количеству вызовов.
Хeff - средняя длина сигнальной единицы для удачного вызова, Leff, составляет 68 байт, так как для передачи номера вызываемого абонента необходимо передать семь в шестнадцатеричном коде, который будет составлять четыре байта информации.
Средняя длина сигнальной единицы для неудачного вызова, Line, равна 65 байт, так как при неудачном вызове в информационном поле передается один знак, занимающий один байт информации.
Среднее время занятия канала для удачного вызова:
Т eff =(tcо +n×tn+tу+tпв +Тi), (4.36)
где tco-время слушания сигнала <<ответ станции>>;
tco n tn –время набора n знаков номера;
tco n tn tпв –время посылки вызова вызываемому абоненту;
tco n tn tпв Тi-средняя длительность разговора.
tco n tn tпв Тi
Teff=(3+6 × 0,8+2+7,5+110)=127с
Среднее время занятия канала для неудачного вызова рассчитывается аналогично, за исключением времени разговора:
Tineff =( tcо +n × tn+tу+tпв), (4.37)
Tineff =(3+6×0,8+2+7,5)=17c.
Cреднее число сигнальных единиц, которыми обмениваются пункты сигнализации для обеспечения удачного вызова:
– начальное адресное сообщение (IAM);
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21