Распростарнение радиоволн

     Поглощение в диапазоне СВ возраста­ет с укорочением длины волны и напряжен­ность электрического поля ионосферной волны больше на более длинных волнах. Поглощение увеличивается в летние месяцы и уменьшается в зимние месяцы. Ионо­сферные возмущения не влияют на распро­странение СВ, так как слой Е мало нару­шается во время ионосферно-магнитных бурь.


     Замирания на средних волнах наблю­даются только в ночные часы, когда на не­котором расстоянии от передатчика возмо­жен приход одновременно пространственной и поверхностной волн в точку В (рис.5.2) причем длина пути пространственной волны меняется с изменением электронной плот­ности ионосферы. Изменение разности фаз этих волн приводит к колебанию напряжен­ности электрического поля во времени, на­зываемому ближним  замиранием. На значительное расстояние от передатчи­ка   (точка  С) могут  прийти  волны  путем одного или двух отражений от ионосферы. Изменение разности фаз этих двух волн также приводит к колебанию напряженно­сти поля, называемому дальним  замиранием. Скорость замираний неве­лика (период замираний составляет 1 — 2  мин).


     Для борьбы с замиранием на передающем конце радиолинии применяются ан­тенны с диаграммами направленности, при­жатыми к земной поверхности. При такой диаграмме направленности зона ближних замирании удаляется от передатчика, а на больших расстояниях поле волны, пришедшей путем двух отражений, оказывается ослабленным.

   

      Напряженность поля ионосферной вол­ны на расстояниях >300 км определяется по графикам, полученным в резуль­тате обработки большого числа наблюдений [7].

   5.3. Особенности распространения коротких волн



     К диапазону коротких поли (KB) относят волны длиною от 10 до 100 м ( = 303 МГц). Волны KB диапазона распростра­няются земной волной на расстояние не бо­лее 100 км вследствие сильного поглощения в земной поверхности и плохих условий ди­фракции. Расчет напряженности поля земной волны следует вести по (2.15).


     Ионосферной волной KB распространя­ются на многие тысячи километров. При этом можно применять направленные антен­ны и передатчики не очень большой мощно­сти. Поэтому KB используются главным об­разом для связи и вещания на большие рас­стояния.


     Распространение KB ионосферной вол­ной происходит путем последовательного от­ражения от слоя F (иногда слоя E) ионосфе­ры и поверхности Земли. При этом волны проходят через нижнюю область ионосфе­ры — слои E и D, в которых претерпевают поглощение (рис.5.3,а). Для осуществле­ния радиосвязи на KB должны быть выполнены два условия: волны должны отражать­ся от ионосферы и напряженность электро­магнитного поля в данном месте должна быть достаточной для приема, т. е. поглоще­ние волны в слоях ионосферы не должно быть слишком большим. Эти два условия ограничивают диапазон применимых рабочих частот.


     Для отражения волны необходимо, что­бы рабочая частота была не слишком высо­кой, а электронная плотность ионосферного слоя достаточной для отражения этой волны в соответствии с (4.9). Из этого условия выбирается максимальная применимая ча­стота (МПЧ), являющаяся верхней границей рабочего диапазона.


     Второе условие   ограничивает   рабочий диапазон снизу:   чем ниже рабочая частота (в пределах коротковолнового   диапазона), тем сильнее поглощение волны   в ионосфере (см. рис.4.2). Наименьшая применимая частота (НПЧ) определяется из условия, что при данной мощности    передатчика    напря­женность электромагнитного   поля   должна быть достаточной для приема.


     Электронная плотность ионосферы меня­ется в течение суток и в течение года. Зна­чит, изменяются и границы рабочего диапа­зона, что приводит к необходимости измене­ния рабочей длины волны в течение суток: днем работают на волнах 10—25 м, а ночью на волнах 35—100 м. Необходимость пра­вильного выбора длины волны для сеансов связи в различное время усложняет конст­рукцию  станции   и   работу   оператора.


    Зоной молчания KB называют кольце­вую область, существующую на некотором расстоянии от передающей станции, в пре­делах которой невозможен прием радио­волн. Появление зоны молчания объясня­ется тем, что земная волна затухает и не достигает этой области (точка В на рис.5.3,а), а для ионосферных волн, падающих под малыми углами на ионосферу, не выполняются условия отражения (4.9). Пределы зоны молчания (ВС) расширяются при уко­рочении длины волны и снижении электрон­ной плотности.









 










Рис. 5.3. Схема распространения КВ на большие расстояния:

а– интерференция волн, отраженных однократно и двукратно от ионосферы: 1 – поверхностная волна; 2 – волна, распространяющаяся путём одного отражения от ионосферы; 3 – волна, распространяющаяся путём двух отражений от ионосферы; 4 – волна, рабочая частота которой больше максимально допустимой; б – интерференция рассеянных волн;   в – интерференция магниторасщеплённых составляющих волн




 









 


Рис. 5.4. Дальнее наземное рассеяние коротких волн











     Замирания в диапазоне KB более глу­боки, чем в диапазоне СВ. Основной причи­ной замираний является интерференция лу­чей, распространяющихся путем одного и двух отражений от ионосферы (рис.5.3,а). Помимо этого замирания вызываются рассеянием радиоволн на неоднородностях ионосферы и интерференцией рассеянных волн (рис.5.3,б), а также интерференцией обыкновенной и необыкновенной составляю­щих магниторасщепленной волны (рис.5.3,в). Обработка измерений за короткие интервалы времени (до 5 мин) показала, что функции распределения амплитуд близки к рас­пределению Рэлея. В течение больших интервалов времени наблюдений распреде­ление ближе к логарифмически    нормальному. Для борьбы с замираниями применяется прием  на  разне­сенные антенны.

     Сигналы, принятые на разнесенные антенны, складывают после детектирования. Эффек­тивным является разнесение по поляриза­ции— прием на две антенны, имеющие вза­имно перпендикулярную поляризацию. Ис­пользуются также приемные    антенны с узкой диаграммой направленности, ориен­тированной на прием только одного из лучей.


     При благоприятных условиях распрост­ранения KB могут огибать земной шар один и несколько раз. Тогда помимо основного сигнала может быть принят второй   сигнал, запаздывающий примерно на 0,1 с и называ­емый радиоэхо. Радиоэхо оказывает мешающее действие на линиях меридиональ­ного направления. Короткие волны при распространении испытывают наземное рассея­ние (рис.5.4). Не вся энергия волны, па­дающей на неровную земную поверхность (луч 1), отражается зеркально, часть ее рассеивается в разных направлениях (лучи 2, 3, 4, 5). При этом часть энергии, отража­ясь от ионосферы, возвращается к месту из­лучения радиоволны (луч 5). Возвратно-рассеянные волны могут быть приняты в пункте излучения, что указывает на возмож­ность прохождения радиоволн данной часто­ты по трассе. Это явление, называемое эффектом   Кабанова, используется для коррекции рабочих частот: перед началом передачи посылают на выбранной рабочей частоте сигналы с импульсной модуляцией. По времени запаздывания и искажению возвратно-рассеянных импульсов судят о пра­вильности выбора рабочей частоты.


     Радиосвязь на KB претерпевает нару­шения, основной причиной которых являют­ся ионосферно-магнитиые бури. При этом слой F разрушается и отражение KB стано­вится невозможным. Наиболее часто эти на­рушения наблюдаются в приполярных райо­нах и длятся от нескольких часов до двух суток. Второй вид нарушений — внезапные поглощения (наблюдаются только на осве­щенной части земного шара), которые длят­ся от нескольких минут до нескольких ча­сов. Часто оба вида нарушений связи возни­кают одновременно.


     Расчет KB линий связи разбивается на два этапа: определение суточного хода мак­симальных применимых частот (МПЧ) и оп­тимальных рабочих частот (ОРЧ); определе­ние напряженности электрического поля в месте приема или определение суточного хода  наименьших  применимых  частот (НПЧ) [7].




5.4. Особенности распространения ультракоротких волн в приземном пространстве



     Общие свойства. К диапазону ультра­коротких волн (УКВ) относят радиоволны длиной от 10 м до 1 мм ( = 30 МГцЗ105 МГц). В нижнем пределе частот диа­пазон УКВ примыкает к КВ. Эта граница определена тем, что на УКВ, как правило, не может быть удовлетворено условие отра­жения радиоволн от ионосферы (4.8). В верхнем пределе частот УКВ граничат с длинными инфракрасными волнами. Диапа­зон УКВ делится на поддиапазоны метро­вых, дециметровых, сантиметровых, милли­метровых волн, каждый из которых имеет свои особенности распространения, но основ­ные положения свойственны всему диапазо­ну УКВ. Условия распространения зависят от протяженности линии связи и специфики трассы.


     Из-за малой длины УКВ плохо дифра­гируют вокруг сферической поверхности Земли и крупных неровностей земной поверх­ности или других препятствий. Антенны стре­мятся расположить на значительной высоте над поверхностью Земли, так как при этом, во-первых, увеличивается расстояние прямой видимости (см.(2.11),(3.5)) и, во-вторых, уменьшается экранирующее влияние мест­ных предметов, находящихся вблизи антен­ны. При этом, как правило, выполняется условие, при котором высота расположения антенны много больше длины волны и расчет напряженности поля можно вести по интерференционным формулам (2.12),(2.13). Если это условие не выполняется (переносные или автомобильные станции, работающие на мет­ровых волнах), расчет ведут по (2.15).

    В диапазоне УКВ земная поверхность может рассматриваться как идеальный ди­электрик, и проводящие свойства земной по­верхности следует учитывать только при распространении метровых волн над морской поверхностью. Поэтому изменение про­водящих свойств почвы (изменение ее влаж­ности) практически не сказывается на распространении УКВ. Но согласно (2.9) даже небольшие неровности земной поверхно­сти существенно изменяют условия отраже­ния УКВ от поверхности Земли.





     Распространение УКВ в пределах прямой видимости. Отражение   от земной поверхности. При расстояниях, много меньших преде­ла прямой видимости (3.5), можно не учи­тывать влияние сферичности Земли и влия­ние рефракции радиоволн в тропосфере. Ха­рактерными особенностями распространения УКВ при этом являются большая устойчи­вость и неизменность уровня сигнала во вре­мени при стационарных передатчике и при­емнике. Расчет напряженности поля можно вести по формуле Введенского (2.14),   если выполняются    условия      применимости     этой формулы.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать