Распростарнение радиоволн

  

4.8. Вопросы для самопроверки


     1. Укажите   источники     ионизации    газа  в   ионосфере.   Какой    из источников является основным ?

     2. Какой процесс называется рекомбинацией ?

     3. Поясните особенности строения ионосферы.

     4. Запишите       выражение     для     определения    диэлектрической проницаемости ионизированного газа, поясните его.

     5. Почему   на   распространение   радиоволн   электроны   оказывают существенно большее влияние, чем ионы ?

     6. Как    изменяется    проводимость    ионизированного   газа,    если электронная плотность возрастает вдвое ?

     7. Какая  частота  называется  собственной частотой   ионизированного газа?

     8. Возможен   ли   волновой   процесс   в   среде,   где   относительная диэлектрическая проницаемость меньше нуля ?

     9. Какие среды называются диспергирующими ?

     10. Показать, что ионизированный газ является диспергирующей средой.

     11. Какой вид имеет график частотной зависимости коэффициента поглощения радиоволн в ионосфере ?

     12. Укажите  особенности  преломления  и  отражения радиоволн в ионосфере.

     13. Волна прошла в ионизированном газе некоторое  расстояние в направление силовых линий постоянного магнитного поля. Какие изменения произошли в структуре поля волны ?

     14. Какие составляющие электрического поля могут существовать в ионизированном газе, если направление распространения волны нормально к направлению силовых линий постоянного магнитного поля ?


5. ОСОБЕННОСТИ РАСПРОСТРАНЕНИЯ РАДИОВОЛН РАЗЛИЧНЫХ ДИАПАЗОНОВ

     5.1.Особенности распространения сверхдлинных и длинных волн

 

     К диапазону сверхдлинных волн (СДВ) относят волны длиной от

10 000 до 100 000 м ( = 303 кГц), а к длинным волнам (ДВ) — волны от 1000 до 10 000 м (= 30030 кГц).


     Токи проводимости для диапазонов СДВ и ДВ существенно преобладают над токами смещения для всех видов земной поверхности. Поэтому при распространении поверхностной волны происходит лишь не­значительное проникновение ее энергии в глубь Земли. Сферичность Земли, служащая препятствием для прямолинейного рас­пространения радиоволн, до расстояний 1000—2000 км остается соизмеримой с дли­ной волны, что способствует хорошему оги­банию длинными волнами земного шара благодаря дифракции. Незначительные по­тери и огибание земной поверхности обу­словили возможность ДВ и СДВ распрост­раняться  земной  волной  на   расстояние до 3000  км.   При   этом   для   расстояния  500—600 км напряженность электрического поля   можно определять по (2.15), а для больших расстояний  расчет ведется  по законам дифракции.


     Начиная с расстояния 300—400 км по­мимо земной волны присутствует волна, отраженная от ионосферы. С увеличением расстояния напряженность электрического поля отраженной от ионосферы волны уве­личивается, и на расстояниях 700—1000 км поля земной и ионосферной волн становятся примерно равными. Суперпозиция этих двух волн дает интерференционную картину поля.


     На расстоянии свыше 3000 км ДВ и СДВ распространяются только ионосферной волной. Для отражения длинных волн до­статочно небольшой электронной плотности, так что днем отражение этих волн может происходить на нижней границе слоя D, а ночью — на нижней границе слоя Е. Про­водимость в этой области ионосферы для ДВ довольно значительна (но в тысячи раз меньше, чем проводимость сухой земной поверхности) и токи проводимости оказыва­ются того же порядка, что и токи смеще­ния. Следовательно, нижняя область ионо­сферы для ДВ обладает свойствами полу­проводника.


     На ДВ и особенно на СДВ электронная плотность слоев D и Е меняется резко на протяжении длины волны. Поэтому и от­ражение здесь происходит как на границе раздела воздух — полупроводник, без проникновения радиоволны в толщу ионизиро­ванного газа. Этим обусловлено слабое по­глощение ДВ и СДВ в ионосфере.


     Расстояние от земной поверхности до нижней границы ионосферы составляет 60—100 км, т. е. того же порядка, что и длина волн (ДВ и СДВ), так что волны распространяются между двумя близко расположенными полупроводящими концен­трическими сферами, одной из которых яв­ляется Земля, а другой — ионосфера. Усло­вия  распространения при этом примерно такие же, как и в диэлектрическом волноводе (рис. 5.1).

     Как и во всяком волноводе, можно отметить оптимальные  волны  — вол­ны, распространяющиеся с наименьшим за­туханием, и критическую волну. Для волновода, образованного Землей и ионосферой, оптимальными являются волны длиной 25—35 км, а критической — вол­на длиной 100 км. Подобно законам рас­пространения радиоволн в обычных волно­водах, в сферическом ионосферном волно­воде фазовая скорость радиоволн превыша­ет скорость света в свободном пространстве. На частотах выше 10 кГц отличие фазовой скорости от скорости света невелико, примерно () - 1 = (15)10-3. Однако фа­зовая скорость изменяется с изменением расстояния от передатчика. Кроме того, она зависит от электронной плотности и числа столкновений электронов с молекулами в той области ионосферы, где происходит отражение радиоволн. Это приводит к не­стабильности фазы волны, главным образом в утренние и вечерние часы, когда меняется высота отражения длинных волн, что необ­ходимо учитывать при работе длинноволно­вых радионавигационных систем. Расчет напряженности электрического поля Еm (мВ/м) для ДВ и СДВ ведется по эмпирической формуле  Остина:

где r — расстояние по дуге большого круга Земли, км; q — соответствующий этому рас­стоянию центральный угол; Р — мощность передатчика, кВт; l — длина волны, км.

 

        





  









Рис. 5.1. Распространение ДВ и СДВ в

               волноводе Земля – ионосфера





 










Рис. 5.2. Ближние и дальние замирания на средних волнах:

1 – земная волна; 2 – волна, отразившаяся от ионосферы один раз;             3 – волна, отразившаяся от ионосферы дважды




 








   

Формула Остина применима для расстояний до 16 000—18 000 км над морем и сушей, при­чем в последнем случае начиная с расстоя­ний  2000—3000 км.


     Длинные и особенно сверхдлинные вол­ны мало поглощаются при прохождении в толщу суши или моря. Так, волны длиной 20—30 км могут    проникать в глубину моря на  несколько  десятков метров (см. табл. 2.1) и, следовательно, могут быть использованы для связи с погруженными подводными лодками, а также для подзем­ной радиосвязи.


    Основным преимуществом ДВ является большая устойчивость напряженности элек­трического поля: сила сигнала мало меняет­ся в течение суток и в течение года и не подвержена случайным изменениям. Необ­ходимая для приема напряженность элек­трического поля может быть достигнута на расстоянии более 20 000 км, но для этого требуются мощные передатчики и громозд­кие антенны.


     Недостатком диапазонов ДВ и СДВ яв­ляется невозможность применения их для передачи высококачественной разговорной речи или музыки и тем более изображений, так как для этого необходима широкая по­лоса частот. В настоящее время ДВ и СДВ используются главным образом для теле­графной связи на дальние расстояния, а также для навигации и наблюдения за грозами.


     В диапазоне ДВ и СДВ наиболее ин­тенсивно действуют атмосферные помехи, источником которых являются грозы. Во время грозового разряда возникает мощный импульс тока, носящий апериодический характер или характер затухающих колеба­ний и имеющий длительность

= 0,13 мс. Такой импульс создает непрерывный спектр частот с максимумом в области 3—8 кГц, спадающий в области высоких частот по закону 1/. В случае, когда помеха создает­ся грозой, происходящей недалеко от при­емного пункта (местной грозой), напряжен­ность поля помехи уменьшается обратно пропорционально частоте. Однако основным источником помех являются грозы, происхо­дящие в течение круглого года в экватори­альных районах земного шара — очагах грозовой деятельности. Частотная зависи­мость интенсивности помех, создаваемых очагами грозовой деятельности, иная, чем от местных гроз, так как она определяется еще и условиями распространения радио­волн от места возникновения помехи до точ­ки приема.


     Радиоволны различной длины, возни­кающие во время грозового разряда, рас­пространяются подобно волнам соответ­ствующих диапазонов. Количественное описание временных и географических изме­нений уровня атмосферных помех произво­дится статистическими методами, основан­ными на результатах обработки данных многолетних измерений. Для каждого се­зона года и для шести часовых интервалов времени суток составляют    карты    с изолиниями медианных значений напряжен­ности поля атмосферных помех на частоте 1 МГц. Со­ставляются также данные о статистическом распределении мгновенных значений напря­женности поля атмосферных помех, по ко­торым определяется вероятность появления выбросов помех большого уровня.




     5.2. Особенности распространения средних волн



     К диапазону средних волн (СВ) отно­сят радиоволны  l=1001000 м (= 0,343 МГц). Диапазон СВ используется для ра­диовещания, радионавигации, радиотеле­графной и радиотелефонной связи; СВ мо­гут распространяться как земными, так и ионосферными волнами.


     Напряженность электрического поля земных волн определяется для малых расстояний по (2.15), а для больших расстояний — по законам дифракции.  СВ испытывают значительное поглощение в полупроводящей поверхности Земли, по­этому дальность распространения земной волны ограничена расстоянием 1000 км. Следует также учитывать, что неровности земной поверхности снижают эффективную проводимость почвы. Приближенно для рав­нинной местности              = (0,50,7) , для холмистой  =(0,150,2) , для районов вечной мерзлоты .

     На большие расстояния СВ распрост­раняются только в ночное время путем от­ражения от слоя Е ионосферы, электронная плотность которого оказывается достаточ­ной для этого. В дневные часы на пути распространения СВ расположен слой D, ко­торый чрезвычайно сильно поглощает энер­гию этих волн. Поэтому при обычно при­меняемых мощностях передатчиков напряженность электрического поля на больших расстояниях оказывается недостаточной для приема и в дневные часы распространение СВ происходит практически только земной волной.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать