Для радиосвязи с ИСЗ, траектория которых проходит ниже основного максимума электронной плотности ионосферы — слоя F2, применимы короткие волны. Отражение и поглощение KB в этом случае подчиняется тем же законам, что и на наземных коротковолновых радиолиниях. Резкое увеличение уровня сигнала, принимаемого со спутника, наблюдается, когда спутник проходит над пунктом приема и над точкой антипода (эффект антипода).
Поворот плоскости поляризации. При распространении радиоволн в ионосфере в присутствии постоянного магнитного поля Земли происходит поворот плоскости поляризации радиоволны.
Максимальное значение угла поворота плоскости поляризации волны (в градусах) определяется выражением, получаемым из (4.14) в предположении, что волна проходит всю толщу ионосферы при наибольшей электронной плотности (днем, летом):
где - рабочая частота, МГц; - истинный зенитный угол спутника (рис.5.10). Значения yмакс для частот 500 МГц, 1 ГГц, 3 ГГц, при = , составляют соответственно ; ; .
Поворот плоскости поляризации в ионосфере проявляется на весьма высоких частотах и изменяется при движении спутника по небосводу из-за изменения угла и флуктуации электронной плотности ионосферы. При приеме на антенну с линейной поляризацией возникают замирания. Для устранения замираний применяют передающие и приемные антенны с круговой поляризацией. При этом нужно учесть, что только в центральной части диаграммы получается поле с круговой поляризацией, а по краям диаграммы — поле с эллиптической поляризацией. Это вызывает потери из-за несоответствия поляризации, которые составляют примерно 0,5 дБ. Если бортовая антенна имеет линейную поляризацию, то возникают потери до 3 дБ [7].
Замирания радиоволн. Рассеяние энергии радиоволн неоднородностями ионосферы и интерференция прямых и рассеянных волн приводят к флуктуациям амплитуды радиосигналов, прошедших через ионосферу. Для обеспечения непрерывного приема таких сигналов их рассчитанную интенсивность следует выбрать больше на величину . Значения , для частот 300 МГц, 1 ГГц, 3 ГГц, составляют соответственно 1,6; 0,5; 0,1 дБ, и показывают, что влияние рассеяния падает с частотой.
Разница в значениях принятой и переданной частот D называется
доплеровским смещением частоты:
Рис. 5.10. Схема радиолинии Земля - космос:
А – наземная антенна; С - спутник
Например, при , r=8103 м/c доплеровское смещение частоты = 0,020,2 МГц.
При прохождении радиоволн, излученных движущимся источником,
через неоднородную среду, которой меняется случайным образом во
времени и пространстве,
также меняется случайным образом.
Так, при прохождении радиоволн, излученных с космического корабля, в неоднородных
тропосфере, ионосфере и космическом пространстве изменение носит статистический характер.
Для уменьшения вредного влияния смещения несущей частоты при космической радиосвязи в приемниках используют автоматическую подстройку частоты или изменяют частоту передатчика, если заранее известна траектория движения излучателя. Кроме того, под влиянием эффекта Доплера деформируется частотный спектр сигнала из-за того, что каждая составляющая спектра получает свое смещение.
Доплеровский сдвиг частоты используют как положительное явление, которое позволяет определять скорость движущегося источника или отражателя, если известны свойства среды. Решают и обратную задачу: измеряя сдвиг частоты и зная скорость движения излучателя, определяют электрические параметры среды.
Поправки при определении координат космических объектов радиотехническими методами. Прохождение радиоволн в тропосфере и ионосфере сопровождается рефракцией и изменением фазовой и групповой скоростей распространения волны. Эти факторы являются причиной ошибок, которые необходимо учитывать при определении координат космических объектов радиотехническими методами. Устранение возникающих ошибок производится путем введения соответствующих поправок [7].
5.6. Особенности распространения волн оптического и инфракрасного диапазонов
Общие положения. К оптическому диапазону относятся электромагнитные колебания с длиной волны 0,39—0,75 мкм. К инфракрасному (ИК) диапазону относятся волны длиной 0,75— 1000 мкм, занимающие промежуточное положение между оптическими и миллиметровыми волнами. Инфракрасный диапазон делят на три области: ближнее инфракрасное излучение— от 0,75 до 1,5 мкм, среднее — от 1,5 до 5,6 мкм и дальнее — от 5,6 до 1000 мкм. Границы спектров оптических, инфракрасных и миллиметровых радиоволн взаимно перекрываются.
Оптические и ИК волны могут фокусироваться линзами и зеркалами, менять свое направление при отражении и преломлении, разлагаться в спектр призмами. ИК волны, подобно радиоволнам, могут проходить сквозь некоторые материалы, непрозрачные для оптических волн. ИК волны нашли широкое применение в различных отраслях промышленности.
Главным преимуществом многих ИК систем является то, что можно использовать излучение от целей, которые или сами являются источниками ИК излучения или отражают излучение естественных ИК источников. Такие системы называются пассивными. Активные ИК системы имеют мощный источник, излучение которого, отфильтрованное в узком участке спектра, концентрируется с помощью оптической системы и направляется в виде узкого пучка на цель.
ИК системы обладают высокой разрешающей способностью.
Ослабление оптических и инфракрасных волн в атмосфере. Полное ослабление оптических и ИК волн в атмосфере обусловлено несколькими факторами. Различают ослабление света в атмосфере, свободной от облаков и тумана, и ослабление света в тумане.
Ослабление в свободной атмосфере складывается из рассеяния света на молекулах газа и водяного пара и селективного поглощения. Мощность, которую несут световые и инфракрасные волны, прошедшие в атмосфере некоторое расстояние r, вычисляется аналогично мощности радиоволны:
где Г — суммарный коэффициент поглощения в дБ/км, равный:
Г=Гг+Гп+Гсел+Гт .
Здесь Гг и Гп — коэффициенты ослабления из-за рассеяния на молекулах газа и пара; Гсел — коэффициент селективного поглощения; Гт — коэффициент поглощения в тумане.
Коэффициент ослабления из-за рассеяния волн на молекулах газа Гг (дБ/км) при давлении воздуха р (МПа), температуре Т (К), и длине волны l (мкм) определяется следующим выражением:
Гг = 25p/Tl4.
Этот вид ослабления значительно меньше проявляется в инфракрасном диапазоне, чем в оптическом.
В свободной от облаков и тумана атмосфере содержатся частицы примесей — паров воды и пыли, на которых также рассеиваются оптические и ИК волны. Для характеристики пространственной картины рассеяния света каждой частицей пользуются понятием индикатрисы рассеяния (угловой функции рассеяния), определяемой как отношение мощности, рассеянной частицей в данном направлении, к потоку энергии, рассеянному во все стороны (понятие, аналогичное диаграмме направленности антенны). Индикатрисы рассеяния определены расчетным путем для сферических частиц различного радиуса а, имеющих разные коэффициенты преломления n. Малые частицы с а/l<<1 и n1 имеют индикатрису, описываемую законом синуса с максимумами в направлении прямого и обратного движения волны. При n → ∞ малые частицы рассеивают назад больше энергии, чем вперед. По мере роста а/l индикатриса рассеяния прозрачных частиц становится все более вытянутой вперед (эффект Ми).
Размер частиц пыли и пара во много раз превышает длину волны, а число частиц не остается постоянным, что затрудняет расчеты коэффициента ослабления. Поэтому предпочитают пользоваться экспериментальными данными для определения ослабления из-за рассеяния на этих частицах. Опытным путем найдено, что коэффициент ослабления пропорционален l-1,75. Потери этого вида имеют наибольшую величину в городах, на ИК волнах они меньше, чем на волнах оптического диапазона.
Селективное поглощение особенно характерно для ИК диапазона. На рис. 5.11 представлено распределение энергии в солнечном спектре, измеренном вблизи Земли для диапазона волн 0,3—2,2 мкм. Если бы не было селективного поглощения, то кривая имела плавный ход, обозначенный пунктирной линией. В видимой части спектра на волнах 0,4—0,75 мкм поглощение незначительно, при длине волны 0,76 мкм наблюдается поглощение в кислороде. Участки сильного поглощения имеются вблизи волн длиной 0,94; 1,10; 1,38 и 1,87 мкм. Это поглощение обусловлено наличием водяных паров в атмосфере, и прозрачность атмосферы для инфракрасных лучей сильно зависит от влажности атмосферы.
Рис. 5.11. Распределение энергии в солнечном спектре вблизи Земли
Рис. 5.12. Спектр излучения чистого неба
Поглощающее действие оказывают углекислый газ (на волнах 2 ,7; 4, 3 и 1220 мкм) и озон (на волнах 4,7 и 9,6 мкм), но основное поглощающее действие оказывает водяной пар, поскольку его содержание намного превышает содержание углекислого газа и озона.
Измерения показали, что сравнительно, хорошей прозрачностью для инфракрасных лучей атмосфера обладает на следующих волнах: 0,95—1,05; 1,2—1,3; 1,5—1,8; 2, 1—2, 4; 3,3—4 ,0; 8, 0—12,0 мкм. В указанных пределах поглощением можно пренебречь, тогда как на промежуточных волнах и волнах длиннее 13,0 мкм происходит практически полное поглощение.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14