Распростарнение радиоволн

Объемные неоднородности ионизирован­ного газа вызывают рассеяние радиоволн. Указанные явления определяют условия распространения радиоволн в ионосфере и в одних случаях могут быть использованы, а в других должны быть учтены при работе радиолиний. В связи с этим возникла не­обходимость изучения строения ионосферы и свойственных ей регулярных и случай­ных изменений.


     Ионосфера в целом является квази­нейтральной, т. е. количества имеющихся в ней положительных и отрицательных за­рядов равны. Состав газа в этой области атмосферы отличается от состава газа вблизи поверхности Земли: помимо моле­кулярных кислорода и азота имеются ато­мы этих веществ, причем газы не переме­шиваются и располагаются слоями в соот­ветствии с их молекулярной массой.


     Температура газа, начиная с высоты h = 80 км, плавно возрастает, достигая 2000—3000 К при  h = 500600 км. Воз­растание температуры с высотой в области ионосферы объясняется тем, что воздух здесь нагревается непосредственно излуче­нием Солнца.


     Основным источником ионизации зем­ной атмосферы являются электромагнитные волны солнечного излучения длиной короче 0,1 мкм — нижний участок ультрафиолето­вого диапазона и мягкие рентгеновские лу­чи, а также испускаемые Солнцем потоки заряженных частиц. Ультрафиолетовые и рентгеновские лучи производят ионизацию только на освещенной части земного шара и более интенсивно в приэкваториальных областях. Заряженные частицы движутся по спиральным линиям в направлении магнит­ных силовых линий к магнитным полюсам земного шара и производят ионизацию глав­ным образом в полярных областях. Счита­ют, что ионизирующее действие потока час­тиц составляет не более 50% ионизирующе­го действия ультрафиолетового излучения Солнца.


     Помимо Солнца источником ионизирую­щего излучения являются звезды, особенно те, которые обладают высокой температу­рой (около    20 000°С) и создают интенсивное ультрафиолетовое излучение. Но из-за большой удаленности звезд ионизирующее действие их излучения составляет примерно 0,001 часть ионизирующего действия Солн­ца. Ионизацию создают также метеоры, вторгающиеся в земную атмосферу со ско­ростями 11—73 км/с. Кроме повышения среднего уровня ионизации метеоры созда­ют местную ионизацию: за метеором обра­зуется столб ионизированного газа, который быстро расширяется и рассеивается, суще­ствуя в атмосфере от одной до нескольких секунд. Такие ионизированные следы метео­ров образуются на высоте 80—120 км над земной  поверхностью.


      Одновременно с появлением новых электронов в ионосфере часть имеющихся электронов исчезает, присоединяясь к поло­жительным и нейтральным молекулам. При этом образуются нейтральные молекулы и отрицательные ионы.


    Процесс воссоединения заряженных частиц и образования нейтральных моле­кул называется   рекомбинацией.


     После прекращения действия источника ионизации электронная плотность спадает по гиперболическому закону. Поэтому с за­ходом Солнца ионизация в нижних слоях ионосферы исчезает не мгновенно, а в верх­них слоях — сохраняется в течение всей но­чи.




     4.2. Строение ионосферы


     Общая   картина     распределения     элек­тронной плотности по высоте h над земной поверхностью изображена на (рис. 4.1). На высоте 250—400 км, имеется основной максимум ионизации. Область ионосферы ниже основного максимума ионизации принято называть внутренней ионосферой, а область ионосферы выше основного мак­симума — внешней ионосферой. Наиболее изучена внутренняя ионосфера.
Во внутренней ионосфере существуют не­сколько неярко выраженных максимумов концентрации электронов, условно называемых слоями (областями), которые принято обозначать символами D, E, F1 и F2. Области ионосферы D, Е и F1 обладают доста­точно высоким постоянством, проявляющим­ся в том, что суточный ход изменения электронной концентрации и высота их располо­жения сохраняются почти неизменными. С наступлением темноты из-за быстрой ре­комбинации исчезают области D и F1. В то же время электронная концентрация области Е сохраняет постоянное значение в те­чение всей ночи.


     В области F2 электронная концентра­ция и высота расположения максимума значительно изменяются день ото дня. При этом ионизация различна в летнее и зим­нее время. Зимой (в северном полушарии) электронная концентрация в этой области увеличивается. Суточный ход электронной концентрации области  F2 зависит также от геомагнитной широты (расстояния в граду­сах дуги от магнитного экватора Земли до точки наблюдения).


     Ионосфера неоднородна и в горизон­тальном направлении. Максимальные гори­зонтальные градиенты электронной плотно­сти наблюдаются во время захода и восхо­да Солнца, но они существенно меньше вер­тикальных градиентов.


    Наряду с рассмотренными регулярны­ми областями ионосферы иногда на высоте 95—125 км образуется так называемый спо­радический слой Е (слой ), в котором электронная концентрация в несколько раз превышает концентрацию области Е. Слой  в средних широтах чаще образуется днем в летние месяцы. В полярных же районах слой  возникает в основном в ночное время.


     Поскольку солнечное излучение является основным источником ионизации атмосфе­ры Земли, то от активности Солнца зависит
и процесс ионизации. Замечено, что актив­ность Солнца изменяется с периодичностью в 11 лет. Критерием солнечной активности служит относительное число солнечных пя­тен, которое характеризует площадь поверхности Солнца, имеющую наиболее высокую температуру. В  настоящее время разработаны методы прогнозирова­ния числа солнечных пятен на много лет вперед и более точно на ближайшие годы. Прогнозирование    числа    солнечных  пятен важно в связи с тем, что электронная плот­ность ионосферы коррелированна со средне­месячными     числами     солнечных     пятен. Максимум электронной концентрации увели­чивается в 1,4—3 раза при переходе от ми­нимума к максимуму солнечной активности.


      Регулярная слоистая структура ионо­сферы временами нарушается, причем эти нарушения вызваны изменением деятельно­сти Солнца, наблюдающимся особенно час­то в годы максимума солнечной активности. Происходящие на Солнце время от времени вспышки являются причиной из­вержения потоков заряженных частиц, попадающих в атмосферу Земли и нарушающих нормальный режим ионизации ионо­сферы.   Структура ионосферы   нарушается также под действием процессов, происхо­дящих в коре Земли и нижних слоях атмосферы, например во время извержения вул­канов.





 














Рис. 4.1. Распределение электронной

плотности по высоте атмосферы


























  

 Изменение ионизации сопровождается изменением магнитного поля Земли и это явление носит название ионосферно - магнитной   бури. Во время ионосферно-магнитной бури понижается элек­тронная плотность в области слоя F. На­рушения этого вида могут длиться от нескольких часов до двух суток и происхо­дят главным образом в приполярных районах.

     Временами на Солнце происходят вспышки интенсивного ультрафиолетового излучения, вызывающего повышенную иони­зацию нижней ионосферы в слое D. Это явление может длиться от нескольких ми­нут до нескольких часов и происходит толь­ко на освещенной  стороне  земного  шара.


     Исследования показали, что помимо регулярных и нерегулярных изменений средних величин электронной плотности в ионосфере происходят непрерывные флук­туации электронной плотности. В ионосфере непрерывно происходят сгущения и разря­жения плотности ионизации, нерегулярные как во времени так и от точки к точке. Кро­ме того, под действием ветров вся неодно­родная структура ионосферы перемещается. Причинами образования неоднородностей в ионосфере являются турбулентное движение воздуха и неоднородность ионизации.


     Неоднородности представляют собой некоторые области с электронной плотно­стью, отличной от среднего значения элек­тронной плотности на данной высоте ионо­сферы. Размеры неоднородностей на высо­те 60—80 км в слое D составляют до не­скольких десятков метров, на высоте слоя  E - 200—300 м, а в слое F размер неодно­родностей достигает нескольких километ­ров, причем они имеют продолговатую форму и вытянуты вдоль силовых линий посто­янного магнитного поля.

     Отклонение электронной плотности не­однородностей от среднего значения элек­тронной плотности на данной высоте со­ставляет                 (0,1 — 1) %; скорость хаотического движения 1—2 м/с. 


4.3. Диэлектрическая проницаемость и проводимость  ионизированного газа (плазмы)



    Относительная диэлектрическая прони­цаемость ионизированного газа отличается от единицы из-за того, что под действием электрического поля проходящей волны электроны получают смещение относитель­но равновесного положения и газ поляризу­ется. Помимо электронов в ионосфере со­держатся ионы и нейтральные молекулы, совершающие беспорядочное тепловое дви­жение. Сталкиваясь с тяжелыми частицами, электроны передают им энергию, получен­ную от электромагнитной волны. При столк­новениях эта энергия переходит в энергию теплового  движения  тяжелых   частиц,  что и приводит  к   поглощению    радиоволн    в ионизированном газе.

Диэлектрическая     проницаемость      и удельная  проводимость  ионизированного газа   определяются   выражениями

где  — масса электрона (9,109  10-31кг); е — заряд электрона       (1,6010-19 Кл);  — чис­ло соударений электрона с тяжелыми час­тицами, происходящее в 1 с, определяемое тепловым движением частиц; Nэ — элек­тронная плотность, см-3.


    Для высоких частот, когда 2>> 2, можно пренебречь величиной 2 по сравне­нию с 2. Тогда выражения для  c учётом подстановки в них числовых значений e,  , , можно за­писать:

                                                 (4.1)                

 

                                                                            (4.2)

     Используя частоту электромагнитной волны (кГц) формулу для e удобно записать в таком виде:

                                                     (4.3)           

     Это основная расчетная формула для оп­ределения относительной диэлектрической проницаемости ионизированного газа. Оче­видно, что при значительной электронной плотности диэлектрическая проницаемость газа может оказаться равной нулю.

    Частота , при которой выполняется условие e = 0,

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать