Распростарнение радиоволн

    В каплях тумана происходят тепловые потери и рассеяние, как это имеет место в диапазоне миллиметровых и сантиметровых радиоволн. Потери тем больше, чем больше размер капель.


     Рефракция оптических и инфракрасных волн в атмосфере. Различают астрономическую рефракцию — преломление лучей, идущих от небесного светила или другого источника, находящегося на небольшой высоте, к на­блюдателю, и земную рефракцию — преломление лучей, идущих от земных объектов.


    Оптические и ближние ИК волны рефрагируют меньше, чем радиоволны. Коэффициент преломления тропосферы для ИК и оптических волн записывается в следующем виде (см. 3.1):

                                     

где  — парциальное давление сухого воздуха (Па).

    В случае астрономической рефракции, когда луч проходит всю толщу атмосферы, показатель преломления которой возрастает с приближением к поверхности Земли, траектория волны всегда обращена выпуклостью к зениту (положительная рефракция). Как и в случае радиоволн, явление рефракции приводит к ошибке в определении  угла места.  

     Земная рефракция может быть как по­ложительной, так и отрицательной. В ус­ловиях нормальной рефракции дальность прямой видимости в оптическом и ИК диа­пазонах    оказывается несколько меньше, чем в радиодиапазоне. Формула (3.5) прини­мает следующий вид:

     


     Радиус кривизны траектории оптиче­ской волны составляет примерно 50 000 км. В оптическом и ИК диапазонах явление сверхфракции наблюдается реже, чем в ра­диодиапазоне. Со сверхрефракцией связано явление миража.


     Распространение  излучения оптических квантовых генераторов в атмосфере. Когерентность, высокая степень моно­хроматичности, большая направленность и  мощность излучений оптических квантовых генераторов (ОКГ) вызывают соответст­вующие особенности распространения этих излучений в атмосфере. Ширина спектра многих ОКГ меньше ширины линий селек­тивного поглощения атмосферных газов. Поэтому для количественной оценки по­глощения излучения ОКГ необходимо иметь данные о селективном поглощении для фиксированных частот. Получение таких дан­ных затруднено ограниченной разрешающей способностью измерительной аппаратуры. Измерение селективного поглощения в диа­пазоне  l = 0,693340,6694 мкм, в который попадает излучение ОКГ на рубине, показа­ли, что при изменении длины   волны менее чем на 10-4 мкм поглощение изменяется от 0 до 80%.  


     Установлено, что при распространении пространственно ограниченных пучков в атмосфере рассеяние на  частицах изменяет распределение мощности по сечению пучка излучения. Это распределение зависит от оптической толщины слоя, геометрии пучка, свойств среды.


    Турбулентные неоднородности тропо­сферы вызывают серьезное ухудшение ус­ловий работы ИК радиолиний. Особенно существенно их влияние сказывается на распространении когерентного излучения. Турбулентности тропосферы нарушают ста­бильность фазового фронта когерентного луча, что приводит к его расширению и от­клонению и вызывает флуктуации ампли­туды.


    Флуктуации амплитуды сигнала подчи­няются нормально-логарифмическому зако­ну распределения. Флуктуа­ции углов прихода пучка излучения харак­теризуются    нормальным    законом.

     Получены некоторые данные, позволяю­щие судить о возможном расширении пуч­ков излучения ОКГ. При измерениях на расстояниях 15 и 145 км наблюдалось уве­личение расходимости пучка на 8" и 13" соответственно.

     Вследствие этого не представляется возможным создать диаграммы направлен­ности ИК антенн шириной менее одной уг­ловой секунды.




     Помехи в оптическом и инфракрасном диапазонах волн. Источник   излучения,    не    являющийся целью, должен рассматриваться как излучение фона, мешающего работе оптической или ИК системы. Излучение фона проявляется    как вредный шум, с которым следует бороться. Качественный вид спектральных характеристик излучения чистого неба днем  1  и ночью 2 представлен на рис.5.12.   

      

     Яркость неба зависит от атмосферного давления и зенитного угла, возрастая к го­ризонту. Облака создают неравномерность в излучении неба как днем, так и ночью, особенно на волнах короче 3 мкм. Наиболее серьезные помехи создают яркие края об­лаков, которые представляют собой ложные цели в ИК диапазоне.


     Земля создает больший фон в ИК об­ласти спектра, чем чистое безоблачное не­бо, отражая коротковолновое излучение складывающееся с собственным тепловым излучение при больших длинах волн. Фон, создаваемый Землей, усложняет    обнаружение наземных целей.



     5.7. Электромагнитная безопасность


     Рассмотрим важный вопросе который хотя и не связан непосредственно с распространением радиоволн, но приобрел в наши дни особое значение. Дело в том, что технологическое развитие общества сопровождается непрерывным возрастанием интенсивности электромагнитных полей искусственного происхождения, которые окружа­ют человека на производстве и в быту. Как следствие, актуаль­ной становится защита здоровья человека от вредного влияния мощных полей, длительно воздействующих на организм.


     Упомянутая здесь проблема относится к компетенции радиационной биологии, которая среди прочего занимается комплексным изучением влияния электромагнитного поля на живое существо. Установлено, что наиболее опасными для человека оказываются ионизирующие излучения, энергия квантов которых достаточна для отрыва электронов от атома. Такими свойствами обладают ультрафиолетовая радиация и все другие более коротковолновые излучения, например электромагнитные волны рентгеновского диа­пазона.


     Биологический эффект поглощенного ионизирующего излучения выражают в особых единицах — грэях (Гр). Одному грэю соот­ветствует поглощение энергии в 1 Дж на 1 кг массы.

     Важнейшее средство защиты человека — ограничение дозы поглощенного излучения. По нормам, принятым в США, для лиц, подвергающихся облучению на производстве, предельно допустимая годовая доза составляет 50 мГр. Индивидуальная доза для осталь­ного населения не должна превышать 50 мГр за 30 лет без учета естественного радиационного фона .


    На радиочастотах энергия квантов (фотонов) недостаточна для ионизации атомов вещества. Падающее электромагнитное по­ле переводит атомы или молекулы в возбужденное состояние. Вслед за этим атомы или молекулы возвращаются в исходное со­стояние, излучая новые кванты той же самой частоты. В конечном итоге вся энергия радиоволн, поглощаемая организмом, переходит в теплоту. Этим часто пользуются в медицине для прогревания внутренних органов. Однако длительное воздействие на человека СВЧ-полей с плотностью потока мощности в несколько мВт/ приводит к болезненным явлениям, прежде всего к помутнению хрусталика глаза. Не исключается возможность генетических из­менений в организме. Поэтому при эксплуатации соответствующе­го оборудования следует неукоснительно соблюдать научно об­основанные нормы радиочастотного облучения персонала [3].


5.8. Вопросы для самопроверки

     1. Укажите основные особенности распространения сверхдлинных и длинных волн.

     2. Каковы достоинства и недостатки радиосвязи на СДВ и ДВ ?

     3. Каковы характеристики сферического волновода Земля-ионосфера ?

     4. Укажите основные особенности распространения средних волн.

     5. Как изменяются условия распространения СВ в течении суток ?

     6. Какова природа замираний сигнала на СВ ?

     7. Как определяется напряженность электрического поля в диапазоне СВ ?

     8. Укажите основные особенности распространения коротких волн.

     9. Исходя  из  какого  условия выбирают  максимально  применимую частоту ?

     10. От каких факторов зависит наименьшая применимая частота?

     11. Что такое зона молчания ?

     12. Каковы причины замираний КВ ?

     13. Какое явление называется эффектом Кабанова ?

     14. В каких районах земного шара связь на КВ затруднительна ?

     15. В какое время суток можно работать на более высоких частотах в пределах коротковолнового диапазона ?

     16. Укажите основные особенности распространения ультракоротких волн в приземном пространстве.

    

17. Укажите особенности распространения УКВ в пределах прямой видимости.

     18. Каким образом влияют отражения от неровной земной поверхности на распространение УКВ ?

     19. Укажите особенности распространения УКВ над пересеченной местностью и в городах.

     20. В чем заключается явление, называемое усиление препятствием?

     21. Укажите особенности распространения УКВ в пределах большого города.

     22. Укажите особенности распространения УКВ на большие расстояния в условиях сверхрефракции.

     23. Поясните процесс рассеяния УКВ на неоднородностях тропосферы.

     24. К чему приводит рассеяние и отражение метровых волн в ионосфере?

     25.  Какие методы приема используются для борьбы с замираниями УКВ?

     26. Укажите основные особенности распространения УКВ в космическом пространстве.

     27. Приведите основные характеристики межпланетной среды.

     28. Поясните особенности УКВ радиолиний Земля-космос: потери энергии; поворот плоскости поляризации; замирания.

     29. Укажите основные особенности распространения волн оптического и ИК диапазонов.

     30. В чем заключаются причины ослабления оптических и ИK волн в атмосфере?

     31. Каковы особенности рефракции оптических и ИK волн?

     32. Каково влияние атмосферы на распространение  излучения оптических квантовых генераторов?

     33. Что является источником помех в диапазонах оптических и ИK волн?

     34. В чем заключается проблема электромагнитной безопасности?



 

 

 

 

 

 

 

ЛИТЕРАТУРА



1.  Яманов Д.Н. Основы электродинамики и распространение радиоволн. Часть 1. Основы электродинамики: Тексты лекций. -  М: МГТУ ГА, 2002. – 80 с.

2.  Яманов Д.Н. Основы электродинамики и распространение радиоволн. Часть 2. Основы электродинамики. Тексты лекций.- М: МГТУ ГА, 2005. – 100 с.

3.  Баскаков С.И. Электродинамика и распространение радиоволн: Учеб. пособие для вузов. – М: Высш. шк., 1992. – 416 с.

4. Никольский В.В., Никольская Т.Н. Электродинамика и распространение радиоволн: Учеб. пособие для вузов. – М: Наука., 1989. – 544 с.

5. Марков  Г.Т.,  Петров  Б.М.,  Грудинская  Г.П. Электродинамика и распространение радиоволн: Учеб. пособие для вузов. – М: Сов. радио, 1979. – 376 с.

6.  Грудинская Г.П. Распространение радиоволн: Учеб. пособие для вузов. – М: Высш. шк., 1975. – 280 с.

7.  Справочник по теоретическим основам радиоэлектроники: Том 1./Под ред. Б.Х. Кривицкого, В.Н. Дулина. – М: 1977. – 504 с.



























СОДЕРЖАНИЕ


    ВВЕДЕНИЕ ……………………………………………………………………….. 3

1. РАСПРОСТРАНЕНИЕ РАДИОВОЛН В СВОБОДНОМ ПРОСТРАНСТВЕ …4

1.1.  Формула идеальной радиопередачи  ………………………………………. 7

1.2.  Область пространства, существенная при распространении радиоволн.     Метод зон Френеля …………………………………………………………. .10

    1.3.  Вопросы для самопроверки ……………………………………………….... 12

2. ВЛИЯНИЕ ЗЕМНОЙ ПОВЕРХНОСТИ НА РАСПРОСТРАНЕНИЕ РАДИОВОЛН  ……………………………………………………………………..13

 2.1.  Поглощение радиоволн различными видами земной поверхности ……….13

2.2. Отражение плоских радиоволн на границе воздух – гладкая               поверхность Земли   ………………………………………………………….17

2.3.  Отражение радиоволн от шероховатой поверхности   …………………….19

2.4.  Классификация случаев распространения земных радиоволн ……………22

2.5.  Поле излучателя, поднятого над плоской земной поверхностью…………22

2.6. Поле излучателя, расположенного вблизи плоской земной     

       поверхности  …………………………………………………………………..25

    2.7.  Дифракция радиоволн вокруг сферической земной поверхности ……….. 28

    2.8   Вопросы для самопроверки ………………………………………………… 29

3. ТРОПОСФЕРА И ЕЕ ВЛИЯНИЕ НА РАСПРОСТРАНЕНИЕ РАДИОВОЛН ..30

3.1.  Состав и строение тропосферы …………………………………………….. 30

3.2.  Диэлектрическая проницаемость и показатель

        преломления тропосферы …………………………………………………... 31

3.3.  Рефракция радиоволн в тропосфере ……………………………………….. 33

3.4.  Поглощение радиоволн в тропосфере ……………………………………... 37

3.5.  Вопросы для самопроверки ………………………………………………… 39

4. ИОНОСФЕРА И ЕЕ ВЛИЯНИЕ НА РАСПРОСТРАНЕНИЕ РАДИОВОЛН …39

4.1.  Ионизация и рекомбинация газа в ионосфере …………………………….. 39

4.2.  Строение ионосферы  ……………………………………………………….. 41

4.3.  Диэлектрическая проницаемость и проводимость ионизированного

       газа (плазмы)………………………………………………………………….. 44

4.4.  Скорость распространения радиоволн в ионизированном газе (плазме) ...46

4.5.  Поглощение радиоволн в ионизированном газе …………………………...47

4.6.  Преломление и отражение радиоволн в ионосфере ………………………. 49

4.7.  Влияние постоянного магнитного поля на электрические

        параметры ионизированного газа…………………...……………………… 50

4.8  Вопросы для самопроверки  ………………………………………………… 52

   5. ОСОБЕННОСТИ РАСПРОСТРАНЕНИЯ РАДИОВОЛН РАЗЛИЧНЫХ ДИАПАЗОНОВ ………………………………………………………………….. 53

5.1.  Особенности распространения сверхдлинных и длинных волн …………. 53

5.2.  Особенности распространения средних волн  …………………………….. 57

5.3.  Особенности распространения коротких волн  .……………………………58


5.4. Особенности распространения ультракоротких волн в приземном пространстве ………………………………………………………………… 62

5.5. Особенности распространения ультракоротких волн в космическом пространстве ………………………………………………………………… 71

5.6. Особенности распространения волн оптического и инфракрасного диапазонов …………………………………………………………………...  77

5.7.  Электромагнитная безопасность …………………………………………...  83

5.8.  Вопросы для самопроверки ………………………………………………...  84

ЛИТЕРАТУРА ……………………………………………………………………  86








Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать