Математические методы экономики

Если

то говорят о возрастающем (убывающем) доходе от расширения масштаба производства. Заметим, что свойство 4 определено в точке, тогда как свойства 1 и 2 - во всем пространстве затрат.

Как мы видим, перечисленные (желательные) свойства производственной функции вполне согласуются с ее определением, так как они касаются только соотношения затраты-выпуск. Действительно, здесь нет никаких требований на бесперебойную работу станков, нормирования движения конвейера и т.д. Поэтому производственная функция, как отображение количественной связи между затратами и выпуском, представляет собой регрессионную модель (см. §2.5 ). Следовательно, она может быть построена на основе статистических данных и с применением методов математической статистики. Оставляя подробное обсуждение этого вопроса до §4.4 , сейчас мы приведем примеры наиболее удачно построенных и потому часто применяемых на практике производственных функций. При этом для простоты будем рассматривать двухфакторную однопродуктовую производственную функцию вида

Производственная функция Кобба-Дугласа. Первый успешный опыт построения производственной функции, как уравнения регрессии на базе статистических данных, был получен американскими учеными - математиком Д. Коббом и экономистом П. Дугласом в 1928 году. Предложенная ими функция изначально имела вид:

где Y - объем выпуска, K - величина производственных фондов (капитал), L - затраты труда, - числовые параметры (масштабное число и показатель эластичности). Благодаря своей простоте и рациональности, эта функция широко применяется до сих пор и получила дальнейшие обобщения в различных направлениях. Функцию Кобба-Дугласа иногда мы будем записывать в виде

Легко проверить, что и

Кроме того, функция (4.2.4) линейно-однородна:

.

Таким образом, функция Кобба-Дугласа (4.2.4) обладает всеми вышеуказанными свойствами.

Для многофакторного производства функция Кобба-Дугласа имеет вид:

Для учета технического прогресса в функцию Кобба-Дугласа вводят специальный множитель (технического прогресса) , где t - параметр времени, - постоянное число, характеризующее темп развития. В результате функция принимает "динамический" вид:

где не обязательно . Как будет показано в следующем параграфе, показатели степени в функции (4.2.4) имеют смысл эластичности выпуска по капиталу и труду.

Производственная функция CES (с постоянной эластичностью замещения) имеет вид:

где - коэффициент шкалы, - коэффициент распределения, - коэффициент замещения, - степень однородности. Если выполнены условия

то функция (4.2.5) удовлетворяет неравенствам (4.2.2) и (4.2.3) (проверьте это самостоятельно). С учетом технического прогресса функция CES записывается:

Название данной функции следует из того факта, что для нее эластичность замещения постоянна (см. §4.3 ).

Производственная функция с фиксированными пропорциями. Эта функция получается из (4.2.5) при и имеет вид:

Производственная функция затрат-выпуска (функция Леонтьева) получается из (4.2.6) при :

Содержательно эта функция задает пропорцию, с помощью которой определяется количество затрат каждого вида, необходимое для производства одной единицы выпускаемой продукции. Поэтому в литературе часто встречаются другие формы записи:

или

Здесь - количество затрат вида k, необходимое для производства одной единицы продукции, а y - выпуск.

Производственная функция анализа способов производственной деятельности. Данная функция обобщает производственную функцию затрат-выпуска на случай, когда существует некоторое число (r) базовых процессов (способов производственной деятельности), каждый из которых может протекать с любой неотрицательной интенсивностью. Она имеет вид "оптимизационной задачи"

Здесь - выпуск продукции при единичной интенсивности j-го базового процесса, - уровень интенсивности, - количество затрат вида k, необходимых при единичной интенсивности способа j. Как видно из (4.2.8) , если выпуск, произведенный при единичной интенсивности и затраты, необходимые на единицу интенсивности, известны, то общий выпуск и общие затраты находятся путем сложения выпуска и затрат соответственно для каждого базового процесса при выбранных интенсивностях. Заметим, что задача максимизации функции f по в (4.2.8) при заданных ограничениях-неравенствах является моделью анализа производственной деятельности (максимизация выпуска при ограниченных ресурсах).

Линейная производственная функция (функция с взаимозамещением ресурсов) применяется при наличии линейной зависимости выпуска от затрат:

где - норма затрат k-го вида для производства единицы продукции (предельный физический продукт затрат).


Методы математического моделирования рисковых ситуаций. Риск и неопределенность в осуществлении экономической деятельности. Место методов математического моделирования в общей схеме управления риском. Основные механизмы управления риском — прямое воздействие на факторы риска и диверсификация. Цели моделирования механизмов управления риском. Методы моделирования неопределенности и риска экономической деятельности.

Любая сфера человеческой деятельности, в особенности эконо­мика или бизнес, связана с принятием решений в условиях неполно­ты информации. Источники неопределенности могут быть самые разнообразные: нестабильность экономической и/или политической ситуации, неопределенность действий партнеров по бизнесу, слу­чайные факторы, т.е. большое число обстоятельств, учесть которые не представляется возможным (например, погодные условия, неоп­ределенность спроса на товары, неабсолютная надежность процес­сов производства, неточность информации и др.). Экономические решения с учетом перечисленных и множества других неопределен­ных факторов принимаются в рамках так называемой теории приня­тия решений - аналитического подхода к выбору наилучшего дейст­вия (альтернативы) или последовательности действий. В зависимо­сти от степени определенности возможных исходов или последст­вий различных действий, с которыми сталкивается лицо, прини­мающее решение (ЛПР), в теории принятия решений рассматрива­ются три типа моделей:

• выбор решений в условиях определенности, если относительно каждого действия известно, что оно неизменно приводит к некото­рому конкретному исходу;

• выбор решения при риске, если каждое действие приводит к одному из множества возможных частных исходов, причем каждый исход имеет вычисляемую или экспертно оцениваемую вероятность появления. Предполагается, что ЛПР эти вероятности известны или их можно определить путем экспертных оценок;

• выбор решений при неопределенности, когда то или иное дей­ствие или несколько действий имеют своим следствием множество частных исходов, но их вероятности совершенно не известны или не имеют смысла.

Проблема риска и прибыли - одна из ключевых в экономиче­ской деятельности, в частности в управлении производством и финансами. Под риском принято понимать вероятность (угрозу) по­тери лицом или организацией части своих ресурсов, недополучения доходов или появления дополнительных расходов в результате осу­ществления определенной производственной и финансовой политики.

Различают следующие виды рисков:

            производственный, связанный с возможностью невыполнения фирмой своих обязательств перед заказчиком;

            кредитный, обусловленный возможностью невыполнения фирмой своих финансовых обязательств перед инвестором;

            процентный, возникающий вследствие непредвиденного изме­нения процентных ставок;

            риск ликвидности, обусловленный неожиданным изменением кредитных и депозитных потоков;

            инвестиционный, вызванный возможным обесцениванием ин­вестиционно-финансового портфеля, состоящего из собственных и приобретенных ценных бумаг;

            рыночный, связанный с вероятным колебанием как рыночных процентных ставок собственной национальной денежной единицы, так и курса зарубежных валют.

Риск подразделяется на динамический и статический. Динамиче­ский риск связан с возникновением непредвиденных изменений стоимости основного капитала вследствие принятия управленческих решений, а также рыночных или политических обстоятельств. Такие изменения могут привести как к потерям, так и к дополнительным доходам. Статический риск обусловлен возможностью потерь ре­альных активов вследствие нанесения ущерба собственности и по­терь дохода из-за недееспособности организации.

Все участники проекта заинтересованы в том, чтобы не допус­тить возможность полного провала проекта или хотя бы избежать убытка. В условиях нестабильной, быстро меняющейся ситуации необходимо учитывать все возможные последствия от действий конкурентов, а также изменения конъюнктуры рынка. Поэтому ос­новное назначение анализа риска состоит в том, чтобы обеспечить партнеров информацией, необходимой для принятия решений о це­лесообразности участия в некотором проекте, и предусмотреть меры по защите от возможных финансовых потерь.

При анализе риска могут использоваться следующие условия или предположения:

• потери от риска не зависят друг от друга;

• потери по одному из некоторого перечня рисков не обязатель­но увеличивают вероятность потерь по другим;

• максимально возможный ущерб не должен превышать финан­совых возможностей участников проекта.

Все факторы, влияющие на рост степени риска в проекте, можно условно разделить на объективные и субъективные. Объективные факторы непосредственно не зависят от самой фирмы: это инфляция, конкуренция, политические и экономические кризисы, экология, на­логи и т.д. Субъективные факторы непосредственно характеризуют данную фирму: это производственный потенциал, техническое осна­щение, уровень производительности труда, проводимая финансовая, техническая и производственная политика, в частности выбор типа контракта между инвестором и заказчиком. Последний фактор играет особо важную роль для фирмы, поскольку от типа контракта зависят степень риска и величина вознаграждения по окончании проекта.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать