Аналогично определяются коэффициенты прямой и полной фондоемкости. Пусть Fi - среднегодовое количество используемых основных фондов. Тогда коэффициент прямой фондоемкости
Коэффициент полной фондоемкости
То же в векторной форме:
Ф = ВTt.
Коэффициент Фj показывает, какое количество основных фондов всех отраслей необходимо для производства единицы j-го конечного продукта.
По аналогии с (1) суммарная потребность в основных фондах вычисляется так:
Коэффициенты полной трудоемкости и фондоемкости можно подобно коэффициентам полных материальных затрат рассматривать как сумму прямой и косвенной составляющих. Например, для полной фондоемкости:
Ф=(Е+А+А2+...+Ак+...)Т, f=f+(А+А2+...+Аk+...)Тf.
Косвенная составляющая полной фондоемкости (так же, как и полной трудоемкости) сравнительно невелика в сырьевых отраслях и возрастает в "завершающих" отраслях до 90¸95%.
Пример. Вычислить общую потребность в трудовых ресурсах, если известны коэффициенты прямых материальных затрат, коэффициенты прямых затрат труда и задан вектор конечного продукта:
Для решения этой задачи нужно воспользоваться формулой
Как видим, возможны два способа: 1) вычислить Х = ВY, а затем применить формулу L=(t,x); 2) вычислить коэффициенты полных затрат труда Т =BTt и далее L=(Т,Y). Но в обоих случаях необходимо сначала вычислить
матрицу В.
Первый способ:
Второй способ:
Важнейшую часть национального богатства составляют основные производственные фонды, представляющие собой материально-техническую базу народного хозяйства. Основные производственные фонды - это средства труда, функционирующие во всех отраслях материального производства. К основным производственным фондам относят только продукты общественного труда, начавшие функционирование в производстве.
Основные производственные фонды весьма различны по своему вещественно-материальному составу и назначению. Одни создают условия для осуществления производственного процесса, другие выполняют транспортные функции, при помощи третьих осуществляется производственный процесс и т.д. В настоящее время в практике нашей статистики принята следующая единая типовая классификация основных производственных фондов по всему народному хозяйству.
· Здания.
· Сооружения.
· Передаточные устройства.
· Машины и оборудование, в том числе: силовые машины и оборудование, из них автоматические, рабочие машины и оборудование, из них автоматические, измерительные и регулирующие приборы и устройства и лабораторное оборудование, из них автоматические, вычислительная техника, в том числе автоматическая, прочие машины, из них автоматические.
· Транспортные средства.
· Инструменты.
· Производственный инвентарь и принадлежности.
· Хозяйственный инвентарь.
· Рабочий и продуктивный скот.
· Многолетние насаждения
· Капитальные затраты по улучшению земель.
· Прочие основные фонды.
По отдельным отраслям материального производства эта типовая классификация конкретизируется с учетом особенностей отрасли.
Основные фонды занимают, как правило, основной удельный вес в общей сумме основного капитала предприятия. От их количества, стоимости, технического уровня, эффективности использования во многом зависят конечные результаты деятельности предприятия: выпуск продукции, ее себестоимость, прибыль, рентабельность, устойчивость финансового состояния.
Для обобщающей характеристики эффективности использования основных средств служат показатели рентабельности (отношение прибыли к среднегодовой стоимости основных производственных фондов), фондоотдачи (отношение стоимости произведенной или реализованной продукции после вычета НДС, акцизов к среднегодовой стоимости основных производственных фондов), фондоемкости (обратный показатель фондоотдачи), удельных капитальных вложений на один рубль прироста продукции
Динамическая модель межотраслевого баланса. Открытая и замкнутая динамические модели. Сбалансированная траектория развития экономики в линейной модели с продуктивной матрицей коэффициентов прямых материальных затрат.
Следующим представителем класса линейных моделей экономики является модель, построенная в середине 1930-х годов австрийским математиком Джоном фон Нейманом. По сравнению с моделью Леонтьева, которую можно использовать для планирования производства на одном плановом периоде в целом (год, пятилетка и т.д.), модель Неймана отслеживает производственный процесс внутри планового периода, т.е. затраты и выпуск, осуществляемые в каждый период времени (от квартала в квартал, от года в год и т.д.). Поэтому она обобщает модель Леонтьева в двух аспектах: в динамическом плане и в плане многопродуктовых отраслей. В модели Неймана предполагается, что экономика функционирует эффективным образом сколь угодно долго. Логическим следствием такой предпосылки является рост производственных возможностей во времени с нарастающими темпами. Поэтому модель Неймана описывает "расширяющуюся" экономику.
Для вывода этой схемы рассмотрим функционирование экономики на некотором конечном периоде времени [0,T] . Отрезок [0,T] разобьем точками , k=0,1,...,T, так, чтобы получилась возрастающая последовательность моментов времени
Тогда получаем последовательность полуинтервалов длины , покрывающих весь отрезок [0,T] . Момент будем трактовать как начальный момент планирования производства товаров, а момент - как плановый горизонт. В дальнейшем во всех отношениях удобно полагать и трактовать моменты как годы. При этих обозначениях мы будем писать .
В этом параграфе, как и в модели Леонтьева, будем предполагать, что экономика состоит из n чистых отраслей с постоянными технологиями, описываемыми матрицей A. Планирование опять будем понимать по схеме затраты-выпуск при известном спросе на товары, но теперь уже с учетом фактора времени.
Под планом производства на отрезке времени [0,T] будем понимать совокупность
Здесь каждая строка соответствует плану в год t ; - вектор запасов товаров, - вектор валового выпуска. Каждая компонента считается максимально возможным при существующих основных фондах выпуском отрасли j. Валовый выпуск отрасли может быть увеличен путем дополнительных вложений, и этот показатель также включается в план. Вектор обозначает планируемое в год t увеличение (приращение) валового выпуска. Наконец, число lt показывает общее количество нанятых во всех отраслях рабочих в год t.
Труд, как вид товара, не рассматривался в исходной модели Леонтьева. Особенность данного товара заключается в том, что он, во-первых, являясь воспроизводимым ресурсом, в то же время не является продуктом какой-либо отрасли, во-вторых, как фактор в производственном процессе, занимает промежуточное положение между материальными ресурсами и готовой продукцией. Никакое производство не может обходиться без трудовых затрат. Единицей ее измерения является рабочая сила. Необходимое для отрасли количество рабочей силы определяется трудовыми затратами, вложенными в выпуск одной единицы продукции. Данный параметр для отрасли j обозначим . Тогда число рабочих в отрасли j в год t равно . Вектор называется вектором трудовых затрат.
Обозначим через , j=1,...,n, объемы материальных затрат, необходимых для приращения на одну единицу выпуска товара i. Тогда материальные затраты на одновременное приращение выпусков всех отраслей на величины будут исчисляться как , где - технологическая матрица приращения производства.
Наглядную картину межотраслевых связей во времени при плане производства , плане конечного потребления на одного работающего на весь плановый период и при постоянных технологиях производства и его приращения показывает схема динамического межотраслевого баланса (рис. 6.2). Эта схема составляется для каждого года , причем при есть валовый выпуск отрасли j к началу планового периода.
Балансовый характер этой схемы заключается в том, что ее элементы должны удовлетворять следующим (балансовым) соотношениям:
Здесь - производственные затраты, - дополнительные затраты, соответствующие приращению производства на вектор , а - конечное потребление в год t. Поэтому условие (6.3.1) требует, чтобы весь годичный запас товаров покрывал все годичные затраты ежегодно. Неравенство (6.3.2) задает условие на необходимый объем трудовых ресурсов, неравенство (6.3.3) говорит о том, что запасы на данный год не могут превышать результатов производства предыдущего года, и, наконец, уравнение (6.3.4) описывает динамику роста валового выпуска из года в год.
Если сравнить систему (6.3.1)-(6.3.5) с моделью Леонтьева (6.2.1), то можно заметить, что последняя получается из (6.3.1) при отсутствии приращения производства, т.е. когда . Дополнительные условия (6.3.2)-(6.3.4) вызваны необходимостью учета трудовых ресурсов и динамического характера развития производства. Как и модель Леонтьева, данная схема может быть обобщена и детализирована по ряду параметров. В приведенном здесь виде наиболее нереальным является условие (6.3.4), которое предполагает (при ) получение результатов от затрат, осуществляемых в начале периода , уже к концу этого периода. Условие (6.3.4) можно переписать так:
В этом равенстве последнее слагаемое имеет смысл приращения производства за первые t лет по сравнению с начальным объемом выпуска. Доля такого приращения, приходящаяся на одну единицу начального валового выпуска, есть
Введем величину . Тогда уравнение (6.3.4) можно написать в виде
Представление динамики производства в подобном виде будет использовано нами в следующем параграфе. Здесь заметим только, что более адекватным описанием динамики производства, чем (6.3.4), представляется равенство
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15