Математические методы экономики

Монополия.

Так как монополист является единственным производителем товара, исходя из кривой спроса, он самостоятельно определяет объем продаж и цену товара (рис. 8.1). Предположим, что в условиях совершенной конкуренции равновесие достигается в точке , а доход данной фирмы, как участника рынка совершенной конкуренции, есть (). Будучи монополистом, при том же уровне спроса эта фирма добьется данного уровня дохода при меньшем выпуске () за счет более высокой цены (). Именно в этом заключается приоритетность положения монополиста.

До какого уровня монополист будет повышать цену товара и снижать объем продаж, чтобы получить максимальную прибыль с учетом издержек на производство товара?

Кривая спроса и оценка собственных издержек являются главными ориентирами для фирмы-монополиста при принятии экономического решения. Она принимает решение относительно объема выпуска (или продажи) товара, а его цена определяется с помощью кривой спроса (см. рис. 8.1). Следовательно, в условиях монополии цена () является функцией от выпуска (), т.е. , и, располагая информацией о спросе, фирма может добиться получения максимальной прибыли.

Монополист может увеличить прибыль двумя путями: либо за счет повышения цены на товар, не изменяя при этом объема выпуска, либо за счет сокращения объема выпуска (снизив тем самым издержки на производство), не изменяя цену товара. Каково же оптимальное действие монополиста?

Чтобы ответить на этот вопрос, обратимся опять к конкурентному рынку и рассмотрим долгосрочную задачу фирмы (4.5.1). Так как мы хотим узнать именно об оптимальном объеме производства, переформулируем эту задачу на языке выпуска. Обозначим доход как функцию от выпуска:

Так как издержки фирмы зависят от объема производства, они также являются функциями от выпуска:

Теперь задачу (4.5.1) можно записать так:

Условие первого порядка для максимизации прибыли есть

Следовательно, чтобы максимизировать прибыль, фирма должна достичь такого объема выпуска, при котором предельный доход равен предельным издержкам. Далее, учитывая тот факт, что , получаем , т.е. равновесная цена, если она существует, должна равняться предельным издержкам:

Графическая иллюстрация этого равенства показана на рис. 8.2, где предельные издержки есть возрастающая функция от объема производства, а предельный доход (цена) - убывающая функция того же аргумента.

Вернемся к монополии и проверим, будет ли цена, максимизирующая прибыль монополиста, подчиняться закону (8.1.2)?

В монополии , поэтому

Далее без потери общности будем считать .

Вычислим предельный доход

Заметим, что и в монополии цена убывает с ростом объема продаж, потому что фирма снижает цену, чтобы продать больше продукции. Поэтому и из (8.1.4) следует

Как видим, в случае монополии предельный доход меньше цены товара.

Проанализируем теперь издержки монополиста. Как и на конкурентном рынке, цены затрат являются функциями от объема затрат, т.е. , . Поэтому издержки на факторы производства выражаются как

Будем предполагать, что для всех .

Вычислим предельные издержки:

По рыночным законам фирма может покупать большее количество данного фактора производства, только предложив более высокую плату. Поэтому . Тогда из (8.1.6) следует

Таким образом, в случае монополии предельные издержки на факторы производства оказываются больше их цен.

Подставляя (8.1.3) и (8.1.5) в (8.1.1), получим оптимизационную задачу монополиста:

Подчеркнем еще раз, в отличие от задачи (8.1.1) фирмы на конкурентном рынке, в условиях задачи монополиста (8.1.7) все цены зависят от объемов продуктов.

Максимум функции прибыли P в задаче (8.1.7) вычисляется по m+1 переменной . Поэтому составим функцию Лагранжа

где - множитель Лагранжа. Выпишем необходимые условия оптимальности точки :

Отсюда имеем, в частности,

Сумма, стоящая в правой части равенства (8.1.8), есть предельный доход (см. (8.1.4)), а сумма, стоящая в правой части (8.1.9), - предельные издержки по производственному фактору j-го вида (см. (8.1.6)). Поэтому величина, стоящая в левой части (8.1.9), представляет собой произведение предельного дохода () на предельный продукт j-го вида затрат (). Это произведение можно трактовать как предельный доход j-го вида затрат.

Исключая из системы необходимых условий множитель Лагранжа , получаем

Пользуясь равенствами (8.1.4) и (8.1.6), перепишем эту систему в виде

Оценим отношение предельной стоимости затрат на предельный продукт

Во-первых, как следует из (8.1.10), эта величина для всех j одна и та же. Во-вторых, издержки можно представить как функцию от выпуска, т.е. . Поэтому, пользуясь равенством (8.1.11), можно формально написать

Так как эта величина одна и та же для всех j, то, опуская индекс, из системы (8.1.10)-(8.1.11) получаем

Следовательно, чтобы максимизировать прибыль, монополист должен достичь такого уровня выпуска, при котором предельный доход равен предельным издержкам.

Для монополиста мы получили такое же правило оптимального поведения, что и любая фирма в условиях конкурентного рынка. Однако в случае монополии

и поэтому оптимальная цена товара отличается от выражения (8.1.2) в сторону повышения. А именно, через предельный доход она выражается как

а через предельные издержки -

 Олигополия.

На практике рыночной властью, т.е. властью над ценообразованием, обладают не только фирмы, являющиеся чистыми монополистами. Во многих отраслях экономики конкурирует небольщое число фирм, каждая из которых обладает некоторой рыночной властью. Таковы, например, крупные металлургические комбинаты России (КМК, Запсиб, Магнитка и др.).

В этом и следующих параграфах мы изучим рыночные механизмы в условиях олигополии, т.е. когда на рынке товара конкурирует небольшое число фирм. Рыночная власть и прибыль олигополистов частично зависят от того, как они взаимодействуют между собой. В некоторых олигопольных отраслях фирмы агрессивно конкурируют, а в других сотрудничают. Естественно, конкуренция приводит к снижению цен, а имея тенденцию к сотрудничеству, фирмы могут назначить цены выше предельных издержек и получить большую прибыль.

Крайнюю форму сотрудничества представляет собой картель. На картельном рынке некоторые или все фирмы вступают в сговор по поводу захвата рынка. Определяя сообща цены товара и объемы продаж, они максимизируют свои прибыли. Картель отличается от монополии тем, что не может контролировать весь рынок товара по причине наличия фирм, не входящих в картель. Другая причина отличия - в нестабильности картеля как структуры, состоящей из фирм, преследующих каждая свои интересы.

Олигополия является преобладающей формой современной рыночной структуры. На олигопольных рынках несколько фирм производят всю или почти всю продукцию. Чем шире олигополия, тем сложнее принятие экономических решений для фирм. Поэтому они могут предпринять стратегические усилия, чтобы затруднить вступление на рынок новых фирм.

Олигополист принимает решение по установлению цены и объема выпускаемой им продукции. Экономическое решение олигополиста складывается сложнее, чем монополиста, так как имеет место конкуренция между несколькими фирмами. Поэтому фирма должна тщательно взвесить свои решения с точки зрения реакции соперников. Стратегические соображения должны быть глубокими и всесторонними. Каждая фирма учитывает реакцию конкурентов, зная, что те, в свою очередь, тоже будут взвешивать ее реакцию на их собственные решения. При этом фирма должна принимать во внимание возможность восстановления ее стратегических рассуждений конкурентами, и потому она должна поставить себя на место конкурентов и поразмыслить, какова бы была их реакция. Именно с позиций такой рекомендации разрабатываются принципы оптимального поведения олигополистов. Некоторые из них мы рассмотрим в следующих параграфах. Здесь мы займемся моделированием задачи олигополиста и олигопольного рынка в целом.

Определяющим свойством олигопольного рынка является то, что все конкурирующие фирмы могут влиять на цены продукции и затрат. Следовательно, прибыль каждой фирмы зависит и от экономических решений всех остальных фирм. Каково будет в этих условиях оптимальное решение олигополиста по объему выпуска и цене товара? Для получения ответа на этот вопрос необходимо построить математическую модель олигополиста и решить совместно систему, состоящую из задач всех конкурирующих между собой фирм.

Обозначим через n число олигополистов и предположим, что все они выпускают один и тот же товар, применяя m видов затрат. Заметим, что при этом продукции разных фирм могут отличаться рядом признаков (качеством, оформлением и т.д.).

Согласно описания олигополии, цена товара (p) определяется объемом всех выпусков , а цена затрат () - объемом затрат всех фирм :

При возрастании выпусков цены понизятся. Поэтому

Аналогично, если фирмы увеличат покупки производственных факторов, произойдет повышение их цен. Поэтому

Пусть - производственная функция i-го олигополиста. Тогда производство описывается системой из n уравнений

Так как все олигополисты действуют на рынках одних и тех же товаров, то

Задача i-го олигополиста может быть сформулирована следующим образом:

Здесь - матрица затрат, - вектор выпусков. Максимизация функции прибыли осуществляется только по переменным , выбором значений которых распоряжается i-ый олигополист.

Из вида целевой функции задачи (8.2.1) приходим к выводу, что максимизация прибыли зависит не только от экономического решения i-го олигополиста, но и от действий его конкурентов, распоряжающихся выбором .

Модель олигополии в целом имеет вид:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать