Математические методы экономики

Для нахождения оптимальной стратегии необходимо проанализировать все возможные стратегии и рассчи­тывать на то, что разумный противник на каждую из них будет отвечать такой, при которой выигрыш игрока А минимален. Обычно минимальные числа в каждой стро­ке обозначаются  и выписываются в виде добавочного столбца матрицы (табл. 5.1.2).

Они обозначают минимально-возможный выигрыш игрока А при соответствующей стратегии Аi. В каждой строке будет свое. Так как игрок А выигрывает, то предпочтительной для игрока А является стратегия, при которой  обращается в максимум, то есть     или ,

где - максиминный выигрыш (максимин), а соот­ветствующая ей стратегия - максиминная.

Таблица 5.1.1


Таблица 5.2.2




Если придерживаться максиминной стратегии, то при любом поведении стороны В (конкурента) гаран­тирован выигрыш, во всяком случае не меньше . Поэтому  называют также ценой игры - тот гаран­тированный минимум, который можно обеспечить при наиболее осторожной (перестраховочной) стратегии.

Очевидно, что аналогичные распределения можно провести и для конкурента В, который должен рас­смотреть все свои стратегии, выделяя для каждой из них максимальные значения проигрыша:      (последняя строка матрицы).

Из всех значений находят минимальное:

                        ,

которое дает минимаксный выигрыш или минимакс.

Такая -стратегия - минимаксная, придерживаясь которой сторона В гарантировано, что в любом случае проиграет не больше . Поэтому называют верхней ценой игры.

Если , то число С называют чистой ценой игры или седловой точкой.

Для игры с седловой точкой нахождение решения состоит в выборе пары максиминной и минимаксной стратегий, которые являются оптимальными, так как любое отклонение от этих стратегий приводит к умень­шению выигрыша первого игрока и увеличению про­игрыша второго игрока по сравнению с ценой игры С.

Однако не все матрицы имеют седловую точку. Тогда решение находят, применяя смешанные стратегии, то есть чередуя случайным образом несколько чистых стра­тегий (гибкая тактика).

Вектор, каждая из компонент которого показывает относительную частоту использования игроком соответ­ствующей чистой стратегии, называют смешанной стра­тегией данного игрока.

Из этого определения следует, что сумма компонент этого вектора равна единице, а сами компоненты не отрицательны.

Обычно смешанную стратегию первого игрока обо­значают как вектор

, а второго игрока - как вектор , где .              (5.1.1).

Если u° - оптимальная стратегия первого игрока, z° - оптимальная стратегия второго игрока, то число     - называют ценой игры.

Для того чтобы число - было ценой игры, а u° и z° — оптимальными стратегиями, необходимо и до­статочно выполнение неравенств:

             ,                     (5.1.2)

             .                     (5.1.3)

Если один из игроков применяет оптимальную сме­шанную стратегию, то его выигрыш равен цене игры и вне зависимости от того, с какими частотами будет применять второй игрок стратегии, вошедшие в опти­мальную, в том числе и чистые стратегии

Внимание к седловым точкам в теории игр традиционно. Объясняется это недоверием к максимину, как к принципу оптимального выбора в том случае, когда нет седловой точки. Поэтому естественно стремление заполнить промежуток между максимином и минимаксом путем применения смешанных стратегий.

Однако, не следует забывать, что:

1) применение смешанных стратегий рисковано, когда игра не повторяется;
2) если игра повторяется, надо иметь уверенность, что у про­тивника нет информации о конкретных решениях другого игрока;
3) противник не обязан применять смешанные стратегии, равно как и стремиться к цели, противоположной цели другого игрока.

Обозначим смешанную стратегию первого игрока p = {pi}, где pi - вероятность применения i-й стратегии, , . Пусть смешан­ная стратегия второго игрока , , qj - вероятность при­менения j-й стратегии, , . Р и Q определяют матема­тическое ожидание платежа:

.

Теорема фон Неймана. Любая матричная игра имеет седловую точ­ку в смешанных стратегиях.

Доказательство. Множества M и N ограничены и замкнуты, так как , , а функция W непрерывна по P и Q . W линейна по P при фиксированных Q, следовательно, вогнута по P при фиксированных Q. Аналогично W выпукла по Q при фиксированных P. M и N выпуклы.

Действительно, рассмотрим такие и , что , , тогда , .

Складывая, получим .

Кроме того, .

Следовательно, при и

тоже смешанная стратегия.

Применяя фундаментальную теорему, получим то, что требуется доказать:

.

Опираясь на доказанную теорему, можно быть уверенным, что ре­шение игры в смешанных стратегиях всегда существует (если только вообще их можно применять). В теории игр доказывается теорема, указывающая на эквивалентность решения матричной игры в смешанных стратегиях и двойственной задачи линейного программирования.

Пусть Po и Qo оптимальные смешанные стратегии, v - цена игры, тогда


.

Из теорема следует, что

(4)


(5)

.

Обозначим .

Поделим (4) на v , получим

.

Из этой задачи линейного программирования можно получить оптимальные стратегии первого игрока (оперирующей стороны).

Аналогично, если , получится задача линейного программирования для получения оптимальных стратегий второго игрока: .


Игры с природой. Оптимальная стратегия в игре с природой при известном распределении её состояний. Максиминный критерий Вальда выбора стратегии в игре с природой при неизвестном распределении её состояний. Критерий минимаксного риска Сэвиджа выбора стратегии в игре с природой при неизвестном распределении её состояний. Критерий пессимизма-оптимизма Гурвица выбора стратегии в игре с природой при неизвестном распределении её состояний.

В случае, когда между сторонами (участниками) от­сутствует «антагонизм» (например, в процессе работы предприятий и торговых посредников), такие ситуации называют «играми с природой».

Здесь первая сторона принимает решение, а вторая сторона — «природа» не оказывает первой стороне со­знательного, агрессивного противодействия, но ее ре­альное поведение неизвестно.

Пусть торговое предприятие имеет т стратегий: и имеется n возможных состояний природы: . Так как природа не является заинте­ресованной стороной, исход любого сочетания поведения сторон можно оценить выигрышем  первой стороны для каждой пары стратегий  и . Все показатели игры заданы платежной матрицей .

По платежной матрице можно принять ряд решений. Например, оценить возможные исходы: минимальный выигрыш

                    

то есть наименьшая из величин в каждой i-й строке как пессимистическая оценка; максимальный выиг­рыш – то наилучшее, что дает выбор i-го варианта

                   

При анализе «игры с природой» вводится показатель, по которому оценивают, насколько то или иное состо­яние «природы» влияет на исход ситуации.  Этот по­казатель называют риском.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать