Математические методы экономики

Такого рода модели называются конфликтными задачами принятия решения или играми n лиц. Конфликтный характер принятия решения здесь заключается в том, что каждая целевая функция зависит от экономических решений всех олигополистов. Поэтому для нахождения оптимальных решений олигополистов наиболее подходящим аппаратом является теория игр. В частности, при отсутствии как антагонистического противостояния, так и сговора между фирмами, их оптимальные стратегии могут быть определены, исходя из принципа равновесия по Нэшу.

Дуополия.

Предположим, что имеется всего две конкурирующих по выпуску одного и того же товара фирмы. Это есть частный случай олигополии, называемый дуополией. Обе фирмы принимают решения по объему выпуска одновременно и тайно друг от друга, и конечная цена товара зависит от совокупного объема производства этих фирм. То есть, как и в олигополии, дуополисты имеют частичную рыночную власть (частичное влияние на цену товара).

Модель дуополии впервые рассматривал французский экономист О. Курно еще в тридцатых годах прошлого столетия. Подход Курно основывается на гипотезе о том, что свое экономическое решение каждая фирма принимает в предположении о постоянном объеме производства своего конкурента. Иными словами, дуополист считает, что конкурент не реагирует на его выпуск. Чтобы лучше понять, как это происходит, рассмотрим пример. Предварительно заметим, что в дуополии фирма ориентируется на ту часть рыночного спроса, которая не обеспечена предложением другой фирмы. Поэтому для фирмы очень важно правильно оценить спрос населения на ее товар и объем производства конкурента.

Математическую модель дуополии получим как частный случай задачи (8.2.2) при n=2 :

где - матрица затрат, - вектор выпусков,

Как и в олигополии,

Для вычисления оптимальных выпусков дуополистов имеется 2(m+1) условий вида (8.2.3):

где

- предположительные вариации дуополиста i, i=1,2 ().

Модель (8.3.1) называется дуополией Курно, если в (8.3.2) выполнены условия

Как видно из определения, в дуополии Курно каждая фирма считает, что изменения объема ее собственного выпуска не повлияют на решение конкурента.

Равновесие Штакельберга. Рассмотренная в предыдущем параграфе модель Курно описывает лишь один из возможных способов формирования экономической стратегии дуополистов. Причем исходная гипотеза (8.3.3) относительно предположительных вариаций, на основе которой строится равновесие Курно, оказалась, по существу, не соответствующей реальности, так как не выдерживает испытания временем.

В этом параграфе мы отказываемся от гипотезы Курно и анализируем другую гипотезу, которая порождает так называемую дуополию Штакельберга.

Фирму 1 (2) будем называть дуополистом Курно, если

Далее фирму 1 (2) будем называть S-стратегом, если она считает, что фирма 2 (1) будет вести себя как дуополист Курно, т.е. что она будет определять свой выпуск, пользуясь кривой реакции () (см. рис. 8.7).

Определение 8.4. Модель (8.3.1) называется дуополией Штакельберга, если одна или обе фирмы являются S-стратегами.

Тройка , где - решение задачи (8.3.1) при условиях дуополии Штакельберга, - соответствующая этим выпускам (в силу системы (8.3.1)) цена товара, называется равновесием Штакельберга.

Равновесие Нэша. В рассмотренных моделях мы исходили из того, что свои экономические решения по поводу объемов выпуска дуополисты принимают лишь на основе информации (гипотезы) об объемах выпуска конкурента. Замечая узость такого подхода, все же надо понимать, что, во-первых, всегда можно обобщить эти подходы на основе более разнообразной информации, во-вторых, как уже было сказано, объем выпуска партнера для конкурирующих фирм является основным и определяющим ориентиром для принятия решения дуополистами.

Обобщая экономические решения, анализированные в дуополиях Курно и Штакельберга, можно сказать, что у каждой фирмы есть два варианта поведения: либо действовать как дуополист Курно, либо действовать как дуополист Штакельберга (т.е. быть S-стратегом).

Экономическое решение i-ой фирмы, характеризующее ее как дуополиста Курно, будем называть ее K-стратегией и обозначать . Аналогично, экономическое решение i-ой фирмы, характеризующее ее как дуополиста Штакельберга, будем называть ее S-стратегией и обозначать .

Таким образом, у каждого дуополиста имеется две стратегии: у фирмы 1 - и , у фирмы 2 - и , и потому может быть реализована одна из четырех ситуаций: , , , . Разместим соответствующие этим ситуациям объемы выпусков фирмы 1 и фирмы 2 в следующую таблицу (рис. 8.8).

На рис. 8.8 - равновесие Курно, - 1-равновесие Штакельберга, - 2-равновесие Штакельберга, - неравновесие Штакельберга.

Матрицу

можно рассматривать как математическую модель принятия решения с двумя участниками, имеющими каждый только две стратегии. Каждой из перечисленных четырех ситуаций соответствует одна из пар выпусков . Например, если первый участник выбрал стратегию , а второй - стратегию , то в создавшейся ситуации выпуск первого участника равен , а второго - . Каждый участник выбирает свою стратегию с целью получения как можно большего выпуска.

Модель (8.4.6) называется бескоалиционной игрой двух лиц или биматричной игрой; участники называются игроками, а выпуск - выигрышем первого игрока, - выигрышем второго игрока.

Таким образом, биматричная игра (8.4.6) может рассматриваться как еще одна (обобщенная) модель дуополии. По построению этой игры оптимальные стратегии (стратегии, максимизирующие выигрыши) игроков являются наилучшими экономическими решениями дуополистов.

Специфика модели (8.4.6), и вообще игровых моделей, в том, что по причине конфликтного характера принятия решения нет ситуаций, доставляющих игрокам их максимальные выигрыши. Объясним это на числовых значениях элементов матрицы Q, положив в примере 8.2 a=30 , b=2, c=6, d=0 . В этом случае матрица Q принимает вид:

Видно, что максимальный выигрыш первого игрока (36) может реализоваться в ситуации , а максимальный выигрыш второго игрока (36) может реализоваться в ситуации . Так как эти ситуации не совместимы, т.е. не могут реализоваться одновременно, то добиться максимальных выигрышей оба игрока одновременно не смогут.

Единственным приемлемым принципом оптимального поведения игроков в биматричной игре является принцип равновесия по Нэшу (см. определение 8.1). Фактически этот принцип отражает известную поговорку: "из двух зол выбирают меньшее". Применяя это мудрое правило, и найдем ситуацию равновесия Нэша в игре Q.

Выбирая стратегию K1, первый игрок в худшем случае получит , а, применяя стратегию S1, - . Лучший из двух худших выигрышей равен . Этот выигрыш соответствует стратегии S1. Рассуждая так же, найдем для второго игрока выигрыш 23 и стратегию S2. Как легко проверить, ситуация и является равновесием Нэша. Действительно, отклоняясь односторонне от ситуации , любой игрок разве что уменьшает свой же выигрыш.

Напомним, что эта же ситуация в дуополии была названа неравновесием Штакельберга, так как существует доминирующая над ней ситуация , в которой оба дуополиста получают большие прибыли. Но в модели (8.4.7) в условиях отсутствия обмена информацией между игроками ситуация реализована не будет ввиду рискованности одностороннего отклонения игроков от ситуации равновесия Нэша. Этот факт говорит в пользу кооперации между дуополистами, так как согласованный выбор привел бы их к гораздо лучшей ситуации .

Статическая модель межотраслевого баланса. Коэффициенты прямых материальных затрат. Достаточное условие продуктивности матрицы коэффициентов прямых материальных затрат. Структурная форма линейной модели баланса межотраслевых материально-вещественных связей.

Межотраслевой баланс (МОБ) представляет собой таблицу, в которой отражен процесс формирования и использования совокупного общественного продукта в отраслевом разрезе.

Балансы бывают отчетные и плановые. Отчетные фиксируют сложив­шиеся пропорции, а плановые отражают некоторое желательное состояние и получаются в результате расчета по моделям, о которых и пойдет речь в этой главе.

В зависимости от того, в каких единицах измеряются межотраслевые потоки, различают балансы натуральные и стоимостные. Далее мы будем иметь в виду в основном стоимостные балансы.

Предположим, что народное хозяйство представлено совокупностью п отраслей. Будем считать, что каждая отрасль производит только один про­дукт и каждый продукт производится только одной отраслью, т. е. между от­раслями и продукцией существует взаимно однозначное соответствие. В действительности это не так, поэтому в МОБ фигурируют не реальные, а так называемые "чистые", или "технологические", отрасли.

Общий вид межотраслевого баланса представлен в таблице. Она состоит из четырех разделов. Первый раздел образуется перечнем "чистых" отраслей. Каждая отрасль представлена в МОБ дважды: как производящая и как пот­ребляющая. Отрасли как производителю соответствует строка таблицы, от­расли как потребителю соответствует столбец. На пересечении i-й строки и j-го столбца находится величина xij - количество продукции
i-й отрасли (в денежном выражении), израсходованной на производственные нужды j-й отрасли. Таким образом, первый раздел характеризует межотраслевые по­токи сырья, материалов, энергии и т. д., обусловленные производственной деятельностью отраслей.


1

2

n

У

Х

1

x11

x12

x1n

y1

x1

2

х21

x22


x2n

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать