Подобное "квантование" осуществляется в живом за счет реакций на сигналы и обеспечивается соответствующими структурами, что позволяет организму функционировать гораздо экономичнее, чем в стационарном режиме и главное в соответствии с обстоятельствами, а это и принципе невыводимо из энтропийных характеристик. Различные подсистемы организма - дыхательная, пищеварительная, выделительная и т.н. - включаются на значительную мощность попеременно, но сигналам о потребности. В это время остальные подсистемы работают лишь на поддержание "боеготовности". И лишь суммирование и осреднение по времени и энергозатратам создает впечатление стационарных потоков массы, энергии и энтропии.
Энергетическое превосходство реальной жизнедеятельности заключается в том, что если стационарный режим требует постоянного уровня энергозатрат, то реальные организмы, работая в информационном режиме, могут почти полностью выключать из работы свои подсистемы.
Сигнально - информационный подход к проблеме жизни позволил "проквантовать" организмы и автоматы, выделив их элементарные структуры, на которых определяются единицы информации, знания, смысла и т.п. На основе этих элементарных единиц строятся, подобно молекулам из атомов, более сложные "надмолекулярные" и высшие структуры [9].
И. Пригожий считает, что необратимость определяется отсутствием единого пути возврата системы к исходному состоянию в силу множества возможных бифуркаций и аттракторов, создающих многовариантность траекторий движения нестабильной системы во времени. Как представляется, однако, более углубленное понимание этого феномена следует из понимания этапов эволюции Вселенной. Каждое изменение характеризуется появлением новых закономерностей. Так было после Большого взрыва, когда от единого взаимодействия поочередно отделялись гравитационное, сильное, слабое и электромагнитное. До возникновения жизни не существовало законов биологии, до появления общества - законов истории и т.п. Лишь неосведомленность о характере этих процессов и накладываемых ими ограничений позволяет нам предполагать неограниченную многовариантность траекторий развития мира в целом и каждой отдельной его системы.
Ограничения многовариантности траекторий движения проявляют себя на всех уровнях материи, начиная от атомных ядер, разнообразие которых ограничено принципом Паули, и кончая организмами, которые должны быть вписаны в геобиоценоз, а для человека еще и в социум. В более же общей формулировке каждый объект должен отражать Космос и его эволюцию, что накладывает сильное ограничение на возможное разнообразие и на кажущееся множество аттракторов [9J. Можно представить себе, каким образом создавались условия для возникновения жизни и ее эволюции к высшим формам - не благодаря антиэнтропийным процессам, а наоборот - благодаря процессам, связанным с ростом энтропии. Начнем с примера, который мы заимствуем у А. Дюкрака [8]. Растянем пружину, закрепленную одним концом. В ней возникнут колебания, которые длились бы вечно, если бы энергия упорядоченного движения пружины не переходила в хаотическое тепловое движение молекул. Именно это свойство обеспечивает возможность упорядоченных процессов на макроуровне. Действительно, без необратимости, отраженной во втором законе термодинамики, мир уподобился бы бесконечно колеблющейся пружине. Эти колебания по разным потенциалам то ослабевали бы, то усиливались. Мир лишился бы устойчивых форм. Как показывает У.Р. Эшбп, адаптация к такому миру была бы невозможна [10] и жизнь не могла бы ни существовать, ни даже возникнуть. Но, очевидно, что для углубленного понимания эволюционных процессов необходимо уяснить пути, по которым происходит реализация второго закона термодинамики. Широкое распространение разнообразных процессов выравнивания, как цепных, так и каталитического типа, позволяет сформулировать принцип максимизации как присущее энергии стремление к выравниванию. Однако процессы выравнивания инициируются не только бифуркациями. Они усиливаются еще и теми свойствами энергии, которые имеют иной характер проявления. В силу их важности для возникновения и эволюции жизни представляется целесообразным зафиксировать их характер в отдельном принципе - дифференциации энергии при наличии сопротивления процессу выравнивания потенциалов. Так, электрический ток, движущийся по проводнику малого сопротивления, порождает лишь небольшое выделение тепловой энергии, если же сопротивление будет возрастать, то к выделению тепла прибавится световое излучение, а затем и химический процесс (горение проводника) и сопровождающий его звуковой импульс. Или болид, двигаясь к Земле, по мере нарастания плотности атмосферы может вызвать вначале разогрев ее и себя, затем свечение, а потом звук и механическое разрушение.
Рассмотрим под углом зрения изложенных выше соображений частный случай проявления жизни в виде земной ее формы с материальной и энергетической точек зрения. Очевидно, с наибольшей вероятностью жизнь должна возникнуть на небесном теле, обладающем максимальным разнообразием потенциальных барьеров. Для реализации такого условия небесное тело должно пройти эволюцию от температур порядка миллиардов градусов до температур, близких к абсолютному нулю. В таком случае оно будет обладать полным набором элементов периодической таблицы, и представлять собой настоящий консервант различных потенциальных барьеров: ядерных, химических, электрических, механических и т.п. С этой точки зрения в масштабах звездных температур Земля как раз и является подобным небесным телом с полным набором химических элементов и температурой ее поверхности, практически не отличающейся от абсолютного нуля.
Сопротивление атмосферы, воды и других химических соединений и веществ потоку солнечных лучей приводит, и соответствии с принципом дифференциации, к трансформации солнечной энергии в различные формы, главной из которых является круговорот воды в природе, и лишь небольшая часть расходуется на химические реакции. Эти, и в первую очередь каталитические, реакции [II], по-видимому, и положили начало жизни. Возникнув, жизнь, благодаря способности к размножению, развивается как цепной процесс в соответствии с принципом максимизации.
Предполагается, что первыми организмами были археобактерии, извлекающие энергию за счет окисления неорганики, в частности железо- и серобактерии. Первоначально между первыми видами организмов не происходило борьбы за источники энергии, имевшейся в избытке. Недостаток энергии не играл никакой роли в биосфере на первых порах ее возникновения и развития, вопреки мнению Больцмана. Но по мере увеличения биомассы конкуренция за источники энергии представляется как сопротивление принципу максимизации, и тогда вновь "включается" принцип дифференциации. Он проявляется на всех этапах развития жизни через образование новых видов и освоения ими различных экологических ниш. Так, в настоящее время почти на каждый элемент периодической таблицы существует вид бактерий, ведущий свое начало от археобактерии, извлекающий энергию за счет его химических преобразований.
Если возникновение и развитие археобактерий можно рассматривать как локальный планетарный процесс, то появление зеленых растений, черпающих энергию от Солнца, носит уже непосредственно космический характер. И здесь срабатывает принцип максимизации, выражающийся к появлении организмов - гетеротрофов, пожирающих зеленые растения, деятельность которых дает выход накопленной в них энергии.
Следующий этап, на котором был реализован принцип максимизации, это появление аэробных организмов, способных окислить глюкозу кислородом воздуха за счет использования энергии метастабильных состоянии, обусловленных химическими связями. Энергия, извлекаемая из глюкозы в этом процессе, в 9 раз превышает анаэробный способ.
С энергетической точки зрения действие принципов максимизации и дифференциации проявилось на этапах повышения организации биологических видов. Каждый новый уровень организации требует новых веществ и условий для своего возникновения и существования - это разные интервалы температур, давлений, концентраций и т.п. Разнообразие веществ, образующих различные организменные структуры, с энергетической точки зрения является следствием принципа дифференциации, позволяющего диссипировать энергию разнообразными путями. Чем из большего количества компонентов состоят организмы, тем уже область их совместного существования. Этим и обусловливается необходимость гомеостаза, который обеспечивает относительную независимость организма от внешней среды. Родоначальник учения о гомеостазе К. Бернар говорил, что он (гомеостаз) есть условие свободы [II]. Для поддержания гомеостаза нужны специальные механизмы, работа которых требует энергозатрат. В итоге даже бактерии тратят на гомеостаз почти половину своей энергии покоя. Что же касается высокоорганизованных, то на него она уходит почти вся. Так, переход на терморегуляцию повышает расход энергии почти на порядок. Но сложные организмы требуют не просто гомеостаза, а полнгомеостаза, т.е. разного гомеостаза для разных своих органов. Например, желудочно-кишечный тракт млекопитающих разбит на ряд отделов, в каждом из которых поддерживается свой гомеостаз. Мозг защищен от ненужных или опасных веществ, которые могут попасть в него из крови, фильтром-гомеостазом, называемым гематоэнцефалическим барьером. В итоге, если кпд простейших при построении новых тканей составляет 70-80%, то кпд высокоорганизованных снижается уже до доли процента [13]. Иными словами, появление высокоорганизованных гетсротрофов - это уже не просто преодоление, а прорыв своеобразного потенциального барьера, созданного растениями на пути реализации принципов максимизации.
Но прорыв этот расширяется еще одним фактором - развитием мозговых структур в сторону все более возрастающей способности не только к управлению насущными потребностями, но ко все более дальнему, широкому и надежному моделированию реальности для постановки своих целей и путей их достижения. Это потребовало их увеличения, усложнения и увеличения энергообеспечения. В итоге, мозг человека, составляющий примерно 2% от всего тела, поглощает примерно 20% его энергетического бюджета в состоянии покоя. Таким образом, с энергетической точки зрения цефализация находится на острие эволюционного процесса как следствие принципа максимизации.
С появлением человека и цивилизации потребление энергии выросло настолько, что если бы все население Земли перешло на уровень потребления индустриальных стран, то экологическая катастрофа последовала бы немедленно. И, наконец, человечество стало разрушать гораздо более мощные потенциальные барьеры - ядерные - и устремилось в поиске новых экологических ниш в космосе.
Время и синергетика
Чрезвычайно жесткое ограничение на огромное разнообразие объектов, допускаемое естественными законами, предусматривает требование соответствия каждого объекта микрокосму. Им является не только человек, как считали древние философы, но и любой камень. Действительно, он должен уравновешивать воздействие на него множества разрушительных воздействий ближнего космоса: силы гравитации, растворяющего действия воды, разрушительных перепадов температуры и химических веществ, содержащихся в воде и воздухе, механических воздействий и т.д. Любой объект возникает тогда, когда эволюция Космоса обусловливает его возникновение, существует - пока является микрокосмом и погибает, когда перестает отражать изменившийся Космос.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35