Электрические аппараты

При отключении обмотки магнитный поток и электромагнитная сила спадают и под действием сил упругости КС размыкаются. Таким образом, в герконовых реле отсутствуют детали, подверженные трению (места крепления якоря в электромагнитных реле), а КС одновременно выполняют функции магнитопровода, токопровода и пружины.

В связи с тем что контакты в герконе управляются магнитным полем, герконы называют магнитоуправляемыми контактами.

 









Рис. 7.13. Простейшее герконовое реле с симметричным замыкающим контактом


На основе герконов могут быть созданы также реле с размыкающими и переключающими контактами. В герконе с переключающим контактом (рис. 7.14, а) неподвижные КС 1, 3 и подвижный 2 размещены в баллоне 4. При появлении сильного магнитного поля КС 2 притягивается

 




 




Рис. 7.14. Переключающие герконы


к КС 1 и размыкается с КС 3. Один из КС переключающего геркона (например, 2) может быть выполнен из немагнитного материала (рис. 7.14,б). Герконовое реле (рис 11.4, в) имеет два подвижных КС 1, 2, два неподвижных КС 5, 6 и две обмотки управления 7, 8. При согласном включении обмоток замыкаются КС 1 и 2. При встречном включении обмоток КС 1 замыкается с КС 5, а КС 2 с КС 6. При отсутствии тока в обмотках все КС разомкнуты. Герконовое реле (рис. 7.14, г) имеет переключающий контакт 3 сферической формы. При согласном включении обмоток 7 и 8 контакт 3 притягивается к КС и КС 2 и замыкает их. После отключения обмоток 7 и 8 и при согласном включении обмоток 9 и 10 контакт 3 замыкает КС 5 и КС 6. Так как КС герконов выполняют функции возвратной пружины, им придаются определенные упругие свойства. Упругость КС обусловливает возможность их вибрации («дребезга») после удара, который сопутствует срабатыванию. Длительность такой вибрации достигает 0,25 мс при общем времени срабатывания 0,5—1 мс. Одним из способов устранения влияния вибраций является использование жидкометаллических контактов. В переключающем герконе (рис. 7.15, а) внутри подвижного КС 1 имеется капиллярный канал, по которому из нижней части баллона 4 поднимается ртуть 5. Ртуть смачивает поверхности касания КС 1 с КС 2 или КС 3. В момент удара контактов при срабатывании возникает их вибрация. Из-за ртутной пленки на контактной поверхности КС 1 вибрация не приводит к разрыву цепи. В конструкции на рис. 7.15,б между КС 2, КС 3 и ртутью 5 находится ферромагнитная изоляционная жидкость 6. При возникновении магнитного поля ферромагнитная жидкость 6 перемещается вниз, в положение, при котором поток будет наибольшим. Ртуть вытесняется вверх и замыкает КС 2 и КС 3. Следует отметить, что жидкометаллический контакт позволяет уменьшить переходное сопротивление и значительно увеличить коммутируемый ток. Наличие ртути удлиняет процесс разрыва контактов, что увеличивает время отключения реле.

Управление герконом можно осуществлять и с помощью постоянного магнита. Если постоянный магнит установлен вблизи геркона, его магнитный поток замыкается через КС, которые в результате этого находятся в замкнутом состоянии. Использование постоянного магнита совместно с управляющей катушкой позволяет создать герконовое реле с размыкающим контактом.

 









Рис.7.15. Ртутные герконы

Лекция №8


Тема лекции:

Электрическая дуга, физические явления, основы горения и гашения дуги постоянного тока


Общие сведения

Большая группа электрических аппаратов представлена коммутационными устройствами, с помощью которых замыкается и размыкается электрическая цепь. Электрический разряд, возникающий при размыкании контактов, приводит к их износу и в значительной степени определяет надежность и долговечность аппарата. Этот разряд в окружающем контакт газе является либо тлеющим разрядом, либо электрической дугой. Тлеющий разряд возникает при отключении тока менее 0,1 А при напряжении на контактах 250—300 В. Такой разряд происходит на контактах маломощных реле, а в более мощных аппаратах является переходной фазой к разряду в виде электрической дуги. Если ток и напряжение в цепи выше определенных значений, то имеет место дуговой разряд, обладающий следующими особенностями;

1. Дуговой разряд имеет место только при относительно больших токах. Минимальный ток дуги для различных материалов для металлов составляет примерно 0,5 А.

2. Температура центральной части дуги очень велика и может достигать 6000—25 000 К.

3. При дуговом разряде плотность тока на катоде чрезвычайно велика и достигает 102—103 А/мм2.

4. Падение напряжение у катода составляет всего 10— 20 В и практически не зависит от тока.

В дуговом разряде можно различить три характерные области: околокатодную, область столба дуги, околоанодную. В каждой из этих областей процессы ионизации и деионизации протекают по-разному.

а) Околокатодная область.

Занимает весьма небольшое пространство длиной не более 10-6 м. Около катода возникает положительный объемный заряд, создаваемый положительными ионами. Между этим положительным объемным зарядом и катодом создается электрическое поле с напряженностью до 107 В/м, в котором движутся электроны, вышедшие из катода и создающие электрический ток. Электрическое поле воздействует на электроны, увеличивая их скорость. При соударении такого электрона с нейтральной частицей может произойти ионизация, для чего электрон должен обладать определенной энергией.

Напряжение (разгоняющее напряжение), которое должен пройти электрон для приобретения энергии, необходимой для ионизации, называется потенциалом ионизации. Для газов этот потенциал колеблется от 24,58 В (гелий) до 13,3 В (водород). Пары металлов имеют значительно меньший потенциал ионизации. Так, для паров меди он равен 7,7 В.

Положительные ионы, так же как и электроны, разгоняются электрическим полем, но из-за большой массы скорость их много меньше. При ударе положительного иона о нейтральную частицу меньшая часть энергии передается на ионизацию, так что ионизация толчком происходит в основном за счет электронов.

Ввиду малой протяженности околокатодной области электроны не набирают скорости, достаточной для ионизации ударом. Чаще всего после удара атом переходит в возбужденное состояние (электрон атома переходит на более удаленную от ядра орбиту). Для ионизации возбужденного атома требуется меньшая энергия. В результате необходимый потенциал ионизации уменьшается. Такая ионизация называется ступенчатой. При ступенчатой ионизации необходим многократный удар электронов по атому: на каждый образующийся положительный ион требуются десятки электронов. Поэтому ток около катода, несмотря на наличие положительных ионов, носит электронный характер.

Образующиеся электроны не создают около катода отрицательного объемного заряда, так как их скорость значительно больше скорости тяжелых положительных ионов. Положительные ионы разгоняются в поле катодного падения напряжения и бомбардируют катод. Благодаря этому температура катода поднимается и достигает точки испарения материала электрода. При высоких температурах появляется термоэлектронная эмиссия катода, которая в сильной степени зависит от температуры электрода. Проведенные исследования также показали, что дуга может существовать только за счет автоэлектронной эмиссии, создаваемой у катода электрическим полем.

б) Область дугового столба. Энергия, приобретенная заряженными частицами в электрическом поле дугового столба, столь мала, что практически ионизация толчком не происходит.

При большой температуре, которая имеет место в области дугового столба, скорость частицы возрастает до значения, при котором удар в нейтральный атом приводит к его ионизации. Такая ионизация называется термической. Основным источником ионов и электронов в столбе дуги является термическая ионизация. Чем меньше масса частицы, тем больше ее скорость движения.

Таким образом, с ростом давления степень ионизации уменьшается. В связи с этим во многих дугогасящих устройствах (ДУ) электрических аппаратов создается повышенное давление газа, что способствует гашению дуги. Очень сильное влияние на ионизацию оказывает температура. Для большого числа двухатомных газов из-за ступенчатой ионизации процесс образования ионов начинается при температурах 6-103 К. Пары металла ионизируются значительно легче. Заметная ионизация начинается уже при температурах 3000—4000 К. Поэтому в ДУ необходимы меры против попадания металлических паров электродов.

в) Энергетический баланс дуги. Процесс ионизации и процесс деионизации в значительной степени определяются температурой дугового промежутка. Последняя зависит от количества тепла, выделяемого в дуге и отводимого от дуги.

Охлаждение дуги происходит за счет излучения, теплопроводности и конвекции.

Для открытой дуги, горящей в воздухе, излучением отдается 15—30 % выделяемой в дуге энергии. Для дуги, горящей в закрытом ДУ, доля тепла, отдаваемого лучеиспусканием, меньше.

Отвод тепла за счет теплопроводности газа в значительной степени зависит от его температуры. Так, при температуре 4000 К молекулы водорода диссоциируют на атомы. При этом от дуги отводится большое количество тепла. Внешне этот процесс представляется как резкое увеличение теплопроводности. Теплопроводность газа сильно зависит от его природы. Так, средняя теплопроводность водорода в 17 раз больше, чем воздуха. Благодаря своей высокой теплопроводности при прочих равных условиях водород способствует более быстрому охлаждению столба дуги. Ток, отключаемый в атмосфере водорода, в 7,5 раза больше, чем в воздухе при том же давлении.

При горении дуги в трансформаторном масле последнее разлагается с выделением водорода, что способствует эффективному гашению дуги. В некоторых аппаратах под действием магнитного поля дуга перемещается с большой скоростью относительно воздуха, что приводит к ее охлаждению за счет конвекции. Этот вид теплоотдачи наряду с теплопроводностью является определяющим для процесса гашения.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать