Электрические аппараты

г) Околоанодная область. Поток электронов из столба дуги устремляется к положительному электроду — аноду. Анод при дуговом разряде не излучает положительных ионов, которые могли бы нейтрализовать электроны. Поэтому вблизи анода создается отрицательный объемный заряд, что и вызывает появление околоанодного падения напряжения и повышение напряженности электрического поля. Околоанодное падение напряжения зависит от температуры анода, его материала и значения тока.

Электроны разгоняются в поле, образованном отрицательным объемным зарядом и анодом. Энергия, приобретенная электронами, отдается аноду. Благодаря большой энергии электронов анод нагревается до очень высокой температуры, которая, как правило, выше температуры катода. Мощный поток электронов выбивает из анода электроны, которые также участвуют в создании отрицательного объемного заряда.

Высокая температура анода и околоанодная область не оказывают существенного влияния на возникновение и условия существования дугового разряда. Роль анода сводится к приему электронного потока из дугового столба.

Для дуги большого тока околоанодное падение напряжения столь мало, что им можно пренебречь.

Распределение напряжения, напряженности электрического поля (градиента) и производной, пропорциональной объемному заряду а в дуге, представлено на рис.8.1.

Падение напряжения у катода составляет 10—20 В и зависит от материала катода и свойств газа, в котором горит дуга. Околокатодное падение напряжения несколько меньше потенциала ионизации газа из-за наличия около катода его паров, у которых потенциал ионизации значительно ниже.

Околоанодное падение напряжения составляет 5—10 В. При больших токах околоанодное напряжение уменьшается, в то время как околокатодное напряжение остается постоянным.












Рис. 8.1. Распределение напряжения, напряженности электрического поля и объемных зарядов в электрической дуге


В некоторых аппаратах низкого напряжения длина дуги невелика. Падение напряжения на столбе дуги мало по сравнению с суммой падения напряжения у катода и анода. Такие дуги называются короткими. Условия гашения короткой дуги в значительной степени определяются процессами, происходящими у электродов, и условиями их охлаждения.

В аппаратах высокого напряжения падение напряжения на столбе дуги значительно больше околоэлектродных, и последними можно пренебречь. Условия существования таких дуг, называемых длинными, определяются процессами в столбе дуги.

Физические особенности дугового разряда при высокой плотности газовой среды


Явление прохождения электрического тока через газ, называемое газовым разрядом, может наблюдаться практически при любых значениях тока. На рис. 8.2 изображена вольтамперная характеристика последовательных стадий газового разряда в воздухе при атмосферных условиях.

При несамостоятельном разряде (зона О В) ток поддерживается за счет внешних ионизаторов (космические лучи, рентгеновские лучи и др.); при самостоятельном разряде (зона В Е) носители электричества возникают в газоразрядном канале непосредственно за счет ионизирующих факторов, присущих газоразрядному каналу.

Между точками О А зависимость и = / (t) следует закону степени трех вторых.

В стадии «насыщения» В) все заряды, содержащиеся в промежутке, достигают электродов. Но так как никакой дополнительной ионизации здесь не возникает, то значительное увеличение напряжения не ведет к существенному изменению тока.

За точкой В напряжение становится достаточным для возникновения ударной ионизации (под действием сил электрического поля), начинается самостоятельная форма разряда.

Участок В — С соответствует стадии пробоя, или «таунсендовской» стадии (по имени Таунсенда, разработавшего математическую теорию этой стадии).

Наиболее характерные признаки стадии пробоя: ударная ионизация, незначительные пространственные заряды, лавинообразный процесс образования электронов (и ионов). При больших расстояниях между электродами и достаточно высокой плотности газа таунсендовская стадия может перейти в так называемую стримерную стадию пробоя.

Когда мощность источника становится достаточно большой, способной вызвать в цепи токи порядка мА, стадия пробоя переходит в стадию тлеющего разряда (С — D). Для тлеющего разряда характерна ударная ионизация, но уже в условиях резко неравномерного поля, когда основное падение напряжения приходится на слой у катода. Основной столб разряда в данном случае представляет собой как бы проводник тока, убыль электронов в котором восполняется за счет столкновения наиболее «быстрых» электронов с атомами газа. Для тлеющего разряда также характерно постоянство произведения давления газа на длину околокатодного слоя.
При достаточно большом токе тлеющий разряд переходит в дуговой (переходная стадия D Е).

 








Рис. 8.2. Вольтамперная характеристика газового разряда     


Дуговой разряд в газовой среде относительно высокой плотности (при атмосферном и более высоком давлении) обладает следующими характерными чертами:

1) ясно очерчена граница между дуговым столбом и окружающей средой;

2)   высокая плотность тока в дуговом столбе (десятки — сотни А/мм2);

3)   высокая температура газа внутри дугового столба, достигающая 5000 –10000° К и более высоких значений. В этих условиях преобладает термическая ионизация газа (см. ниже). При нормальных условиях дуговая стадия разряда (и термическая ионизация) в воздухе практически прекращаются при температурах около 3000° К;

4)   высокая плотность тока на катоде и малое падение напряжения у катода.

Одно время полагали, что характерной особенностью дуги является высокая температура катода, однако теперь уже совершенно ясно, что дуговой разряд на металлических электродах может существовать практически и при холодном катоде. На рис. 2. 2 приведено изображение дугового столба между металлическими контактами и показано распределение напряжения вдоль него. Как можно видеть, падение напряжения на дуге складывается из трех слагаемых: катодного падения напряжения; падения напряжения в дуговом столбе и анодного падения напряжения.

Общее напряжение на дуге

При условии однородности дугового столба последний член — напряжение на дуговом столбе — может быть представлен как произведение напряженности электрического поля Е на длину канала дуги.

Катодное падение сосредоточено на очень небольшом участке дуги, непосредственно примыкающем к катоду (около 0,001 мм при нормальном атмосферном давлении). Оно составляет величину порядка 10 –20 В, следовательно, средняя напряженность электрического поля у катода достигает величины    порядка 105 В/см и выше. При таких напряженностях выход электронов с поверхности катода может осуществляться в значительной степени за счет автоэлектронной эмиссии. Если материал катода таков, что температура его кипения может превысить 2500° К, то эмиссия электронов с поверхности катода может происходить и за счет термических процессов (термоэлектронная эмиссия). При этих условиях выход электронов с катода обеспечивается и при более низких падениях напряжения у катода. В этом случае катодное падение является не прямой причиной выхода электронов с катода, как при автоэлектронной эмиссии, а косвенной, обеспечивающей выделение около катода необходимой энергии для подогрева катода.

Возможно и совместное существование термической и автоэлектронной эмиссии при нагретом катоде.

Дуга может существовать между металлическими электродами и при холодном катоде. В этом случае имеет место в основном автоэлектронная эмиссия.









Рис. 8.3. Распределение напряжения по длине электрической дуги


Возможен и такой механизм выхода электронов с катода, когда за счет высокой удельной плотности энергии в области околокатодного пространства возникает высокая степень термической ионизации газа. При этом электроны уходят в зону Дуговой плазмы, а положительные ионы, падая на катод, забирают электроны из катода, образуя нейтральные атомы. Таким образом создается электрический ток в цепи. Вполне вероятно, что при холодном катоде имеет место совместное действие автоэлектронной эмиссии и эмиссии за счет термической ионизации в околокатодном пространстве. Следовательно, каким бы ни был механизм освобождения электронов с катода, при всех условиях у катода должна совершаться работа, т. е. выделяться энергия, что и обеспечивается благодаря катодному падению напряжения.

Анодное падение напряжения имеет место в области, непосредственно примыкающей к аноду. Оно не является необходимым условием существования дугового разряда, так как задача анода относительно пассивная — принимать идущий к нему из зоны плазмы дуги электронный поток. Повышение же напряженности электрического поля у анода является следствием образования у анода пространственного отрицательного заряда из-за недостатка ионов у анода. Анод в дуговом разряде не излучает положительные ионы. Ионы же, возникающие в дуговом столбе, хотя и с небольшой скоростью, движутся к катоду, таким образом непосредственно у поверхности анода образуется преобладание отрицательных зарядов и создается условие для анодного скачка напряжения (анодного падения напряжения). Величина анодного падения напряжения зависит от температуры анода, рода металла и пр. Пришедшие из столба дуги электроны, нейтрализуясь на аноде, освобождают «работу выхода», затраченную ранее на выход электронов из катода. Часто температура анода бывает даже выше, чем температура катода.

Падение напряжения в дуговом столбе UCT представляет собой произведение напряженности электрического поля Е на длину столба l. Произведение напряженности электрического поля на ток в дуге определяет мощность, подводимую к дуговому столбу из сети на единицу его длины W = Ei.

При установившемся состоянии эта мощность равна мощности, рассеиваемой дугой в окружающее пространство Р, т. е. Р = W.

Рассеивание энергии дуговым столбом идет посредством излучения, теплопроводности и конвекции. При различных условиях гашения дуги в отключающих аппаратах может преобладать тот или иной вид теплоотдачи. Это зависит от величины тока, среды, в которой образуется дуга (различные газы или жидкости), давления, состояния среды (неподвижная или движущаяся) и пр.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать