ДН, в котором не предусмотрено протекание по обмоткам по-стоянной составляющей тока, называется дросселем насыщения без подмагничивания, а в котором предусмотрено протекание по какой-либо из обмоток постоянной составляющей тока, называется дро& селем насыщения с подмагничиванием.
Магнитные усилители выполняются на дросселях насыщения с подмагничиванием: благодаря разной величине постоянной составляющей тока (или напряжения) изменяется соотношение проводящих и непроводящих долей полупериода и изменяется ток (напряжение) в нагрузке.
Магнитные усилители делятся на две основные группы: дроссельные магнитные усилители и магнитные усилители с самоподмагничиванием.
Дроссельным называют магнитный усилитель, по рабочим обмоткам которого протекает переменный ток (иногда их называют ДН с подмагничиванием).
Магнитным усилителем с самоподмагничиванием (МУС) называют усилитель, по рабочим обмоткам которого протекает однополупериодный выпрямленный ток (или однополярный импульсный), т. е. в МУС по рабочим обмоткам проходит постоянная составляющая тока, и его сердечники можно было бы назвать ДН с самоподмагничиванием.
а) Принцип действия. Магнитный усилитель (МУ) — это электрический аппарат, предназначенный для усиления электрического сигнала по току, напряжению или мощности. В схеме простейшего дроссельного МУ (ДМУ), называемого дросселем насыщения (рис. 10.2), используется управляемое индуктивное сопротивление. Замкнутый магнитопровод изготавливается из материала с резко выраженной нелинейностью кривой намагничивания B=f(H). Рабочая обмотка переменного тока wp включается в цепь нагрузки RH. В обмотку управления wy подается управляющий постоянный ток Iу. Кривая намагничивания материала магнитопровода дана на рис. 10.3. При прохождении переменного тока по обмотке wp на обмотке wy наводится ЭДС. Эта ЭДС будет создавать переменный ток в цепи управления, для ограничения которого включается балластный дроссель Хб.
Рис. 10.2. Дроссельный МУ на одном магннтопроводе
Рис. 10.3. Изменение индукции В, напряженности Н и тока Iр при Iу = 0 и Iу = Iутах
При отсутствии тока управления (цепь управления разомкнута) индуктивное сопротивление обмотки
(10.1)
где
активное сечение магнитопровода;
число витков рабочей обмотки;
ее индуктивность;
средняя длина магнитной линии в магнитопроводе.
При неизменныхиндуктивность, определяется абсолютной магнитной проницаемостьюПрисостояние магнитопровода характеризуется ненасыщенной зоной 1 (рис. 10.3). В этой зоне магнитная проницаемость велика и индуктивное сопротивление обмотки максимально.
Обычнопоэтому ток в цепи рабочей обмотки определяется только значением,. и имеет минимальное значение, равное. Напряженность магнитного полянаходится по индукции .
Подадим в обмотку управления такой постоянный ток управления IУmax, чтобы рабочая зона перешла в область 2. В этой области насыщения материал имеет магнитную проницаемость Индуктивное сопротивление рабочей обмоткирезко уменьшается. Значения выбираются так, что. Тогда ток в цепи определяется только сопротивлением нагрузки. При этом все напряжение источника питания приложено к сопротивлению нагрузкии активному сопротивлению rр рабочей обмотки
Мы рассмотрели два крайних режима усилителя — режим холостого хода, когда и ток в нагрузке имеет минимальное значение и режим максимального тока нагрузки. При плавном увеличении токаток нагрузки плавно увеличивается от
до максимального значенияза счет уменьшения магнитной проницаемости. Характеристика управления ДМУ приведена на рис. 10.4. По оси абсцисс отложен ток управления, приведенный к рабочей обмотке
Идеальная характеристика управления 1 является прямой, идущей из начала координат под углом 45° к оси. Реальная характеристика 2 отличается от идеальной наличием тока холостого ходаи плавным переходом от линейной части характеристики к току
В линейной зоне характеристики соблюдается равенство средних значений МДС
(10.2)
Рис. 10.4. Характеристика управления ДМУ
Равенство (10.2) не зависит от колебаний питающего напряжения, сопротивления нагрузки и частоты источника. Данному значению тока управления всегда соответствует единственное значение тока нагрузки Таким образом, ДМУ является управляемым источником тока.
Вследствие низких значений коэффициента усиления и большой массы ДМУ в настоящее время применяются редко, в основном как измерительные трансформаторы постоянного тока и напряжения. В первом случае роль обмотки управления wy выполняет шина, по которой проходит измеряемый постоянный ток. Под воздействием магнитного потока, созданного током Iу, магнитопроводы 1 и 11 насыщаются (рис. 10.4,а). Рабочие обмотки подключены к источнику переменного напряжения uР и создают, магнитные поля с индукцией Bp1 и Вр2. В цепь рабочих обмоток через выпрямительный мост включен измерительный прибор ИП, который является нагрузкой усилителя. Допустим, в рассматриваемый полупериод вектор индукции ВР1 совпадает по направлению с вектором индукции Ву управляющего поля обмотки wy, а вектор индукции Вр2 направлен встречно вектору Ву. В результате магнитопровод 1 насыщен и сопротивление обмотки хр1 переменному току равно нулю, а магнитопровод 11, наоборот, далек от насыщения. Материал магнитопроводов 1 и 11 имеет кривую намагничивания, форма которой близка к прямоугольной. Обозначим через Вs значение индукции насыщения материала магнитопровода. В таком материале при суммарном значении магнитной индукции напряженность поля/ При B>BSи, следовательно, и не оказывает влияния на полное сопротивление цепи рабочих обмоток. В магнитопроводе 11, где можно записать
(10.3)
Из этого равенства следует, что токв течение рассматриваемого полупериода повторяет форму тока управления Iу. Так както и токв течение данного полупериода, т.е. принимает прямоугольную форму. В следующий полупериод встречно направлены вектора индукции ВР1 и By в магнитопроводе 1. Токизменит знак, но сохранит прямоугольную форму. На рис. 10., б показаны временные зависимости тока управления /у, тока в цепи рабочих обмотоки токапротекающего через измерительный прибор ИП. Мгновенные значения токов связаны равенствомкоторое выполняется и для средних значений
Реальная форма кривой намагничивания материала магнитопроводов отличается от прямоугольной. Поэтому и форма тока ip не прямоугольна, а в токе iН появляются глубокие провалы, что вызывает определенную погрешность измерения.
Рассмотренное устройство может быть использовано и в качестве измерительного трансформатора напряжения постоянного тока. Для этого многовитковая обмотка управления wу подключается к измеряемому напряжению U через большое добавочное сопротивление (рис. 10.5, в).
Ток в обмотке управления wy пропорционален напряжению: Для уменьшения потерь в добавочном сопротивлении ток берется малым — около 10 мА. Измерение этого тока производится так же, как в рассмотренной выше схеме.
Рис. 10.5. Схема трансформатора постоянного тока (а), изменение токов в его обмотках (б) и измерительный трансформатор постоянного напряжения (в)
Усилитель с самонасыщением (МУС)
а) Физические процессы. Если в цепь рабочей обмотки МУ включить диод, то под действием постоянной составляющей выпрямленного тока происходит подмагничивание магнитопровода. Такие усилители называются усилителями с самоподмагничиванием или с самонасыщением (МУС). При рассмотрении такого усилителя (рис. 10.6) примем, что обратное сопротивление диода VD равно бесконечности, а прямое учитывается сопротивлением RB. В цепи управления включен балластный дроссель Хб для ограничения переменного тока, создаваемого рабочей обмоткой. Полярность напряжения источника, при которой диод проводит ток, примем за положительную, полупериод, при котором ток проходит через нагрузку, назовем рабочим (РП). Процессы, происходящие в МУС, в основном определяются формой динамической петли гистерезиса материала магнитопровода. Динамической петлей гистерезиса материала называется зависимостьВ(Н) при быстром изменении намагничивающего тока. Вследствие магнитной вязкости и вихревых токов в материале процесс перемагничивания замедляется и ширина динамической петли гистерезиса превышает ширину статической петли. Чем больше тем шире петля гистерезиза. Для материала с высокой степенью прямоугольности кривой намагничивания динамическая петля гистерезиса имеет форму параллелограмма (рис. 6.6, о).
Рис. 10.6. Схема однополупериодного МУС
При отсутствии управляющего поля магнитопровод под-магничивается полем, созданным постоянной составляющей тока рабочей обмотки. Под действием этого поля в магнитопроводе устанавливается остаточная индукция В рабочем полупериоде рабочая точка, характеризующая состояние магнитопровода, с ростом тока перемещается по участку 1—3. Так как магнитопровод насыщен, индуктивное сопротивление обмотки wp равно нулю. Все напряжение источника приложено к активному сопротивлению цепи К концу рабочего полупериода состояние магнитопровода вновь возвращается в точку 1. Таким образом, при отсутствии сигнала управления ток нагрузки в рабочий полупериод
В следующий полупериод диод не пропускает ток и состояние магнитопровода характеризуется точкой 11 (напряжение источника приложено к вентилю и iР =0)
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46