При КЗ
плавкая вставка испаряется по всей длине и в цепь вводится длинная дуга,
горящая в узкой щели и имеющая высокое сопротивление, особенно в начальной
стадии, когда пары металла
недостаточно ионизированы. Все это приводит к возникновению
больших перенапряжений — до 4,5 Uном на контактах предохранителя. Для
ограничения перенапряжений применяются вставки переменного сечения. Вначале
сгорает участок меньшего сечения, а затем большего. В результате длина дуги
растет медленней.
Рис. 11.7. Предохранитель типа ПК
Предохранители с мелкозернистым наполнителем обладают токоограничением, особенно при больших токах КЗ. В длительном режиме интенсивное охлаждение тонких плавких вставок позволяет выполнять их с минимальным сечением и снизить ток плавления.
С ростом номинального тока эффект токоограничения падает. Номинальный ток отключения предохранителей достигает 20 кА при напряжении до 10 кВ. Предохранители серии ПКТН на напряжение до 35 кВ имеют внутри керамический каркас с тонкой плавкой вставкой. Так как номинальный ток вставок менее 1 А, то их сечение мало и токоограничивающий эффект особенно велик. Плавкая вставка выполняется из константановой проволоки с четырехступенчатым сечением для ограничения перенапряжений. Плавление вставки происходит последовательно по ступеням. Предохранитель обеспечивает защиту высоковольтных шин от повреждения трансформатора напряжения при любой мощности источника питания (ток ограничивается предохранителем).
Предохранители серий ПК и ПКТН работают бесшумно, без выброса пламени и раскаленных газов.
Для нормальной работы предохранителей особо важное значение имеет герметизация. При проникновении влаги в предохранитель он теряет свойство дугогашения. Поэтому места пайки и цементирующая замазка, крепящая колпачки, окрашиваются специальной влагозащитной эмалью. Перезарядка предохранителя в эксплуатации не допускается.
Как правило, установки напряжением 35 кВ и выше работают на открытом воздухе и подвержены воздействию атмосферы. В этих условиях трудно обеспечить надежную работу предохранителя ПК из-за увлажнения наполнителя.
Перспективы дальнейшего развития предохранителей на напряжение выше 35 кВ осложняются технологическими трудностями изготовления и ростом их габаритов.
в) Стреляющие предохранители. Для работы на открытом воздухе при напряжении 10 и 35 кВ и отключаемом токе до 15 кА применяются так называемые стреляющие предохранители типов ПСН-10 и ПСН-35. На рис. 11.8 показан патрон предохранителя ПСН-35. В корпусе 1 установлены две винипластовые трубки 2 и 3, соединенные стальным патрубком 4. Плавкая вставка 5 присоединяется к токоведущему стержню 6 и гибкому проводнику 7, соединенному с наконечником 8. Патрон, установленный на изоляторах, показан на рис. 11.9. Изоляторы1 крепятся к стальному цоколю 2. Цепь присоединяется к выводам 3 и 4. Вращающийся контакт 5 действует на наконечник 8 (рис. 11.8) и с помощью своей пружины стремится вытащить гибкий проводник 7 из трубки 3. При перегорании плавкой вставки образуется дуга, которая, соприкасаясь со стенками трубки, разлагает их, и образующийся газ поднимает давление в трубке. При вытягивании наконечника из трубки длина дуги увеличивается, давление возрастает. При больших токах мембрана 9 в патрубке 4 разрывается и дуга гасится поперечным дутьем. Если ток невелик, то дуга гасится продольным потоком газа, который вырывается из трубки после выброса гибкого контакта 7 из трубки. Длительность горения падает при увеличении тока. При больших токах дуга гаснет за 0,04 с. При малых токах (800—1000 А) время горения возрастает до 0,3 с.
Рис. 11.8. Патрон стреляющего предохранителя типа ПСН-35
Рис. 16.14. Предохранитель типа ПСН-35
Процесс отключения сопровождается сильным выбросом пламени, газов и стреляющим звуковым эффектом. Поэтому стреляющие предохранители соседних фаз должны быть на значительном удалении друг от друга.
В процессе гашения дуга сначала имеет небольшую длину, а затем длина ее увеличивается по мере выброса гибкого проводника. Это ограничивает скорость роста сопротивления дугового промежутка и устраняет перенапряжения.
г) Выбор предохранителей. При определении номинального тока вставки необходимо исходить из условия максимальной длительной перегрузки.
Очень часто обмотка высшего напряжения трансформатора присоединяется через предохранитель. При подаче напряжения на трансформатор возникают пики намагничивающего тока, среднее значение амплитуды которых достигает 10 Iном., а длительность прохождения примерно равна 0,1 с. Выбранный по номинальному току предохранитель должен быть проверен на прохождение в течение 0,1 с начального намагничивающего тока.
В заключение необходимо проверить селективность работы предохранителя с выключателями, установленными на стороне высокого и низкого напряжения.
При КЗ в самом трансформаторе время отключения предохранителя должно быть меньше, чем выдержка времени выключателя, установленного на стороне высокого напряжения и ближайшего к предохранителю. При КЗ на стороне низкого напряжения предохранитель должен иметь время плавления больше, чем уставка защиты выключателей на стороне низкого напряжения. При выборе предохранителя необходимо соблюсти также соотношение
Лекция №12
Тема лекции:
Контакторы постоянного и переменного тока, параметры, требования. Магнитные пускатели
Общие сведения
Контактор – это одноступенчатый аппарат, предназначенный для частых дистанционных включений и отключений электрических силовых цепей. Замыкание контактов контактора может осуществляться электромагнитным или гидравлическим приводом. Наибольшее распространение получили электромагнитные контакторы.
В настоящее время частота коммутаций в схемах электропривода достигает 3600 в час. Этот режим работы является наиболее тяжелым. При каждом включении и отключении происходит износ контактов. Поэтому принимаются меры к сокращению длительности горения дуги при отключении и к устранению вибраций контактов.
Общие технические требования к контакторам и условия их работы регламентированы ГОСТ 11206–77.
Основными техническими данными контакторов являются номинальный ток главных контактов, предельный отключаемый ток, номинальное напряжение коммутируемой цепи, механическая и коммутационная износостойкость, допустимое число включений в час, собственное время включения и отключения. Способность контактора, как и любого коммутационного аппарата, обеспечить работу при большом числе операций характеризуется износостойкостью. Различают механическую и коммутационную износостойкость. Механическая износостойкость определяется числом циклов включения-отключения контактора без ремонта и замены его узлов и деталей. Ток в цепи при этом равен нулю. Механическая износостойкость современных контакторов составляет (10-20) 106 операций.
Коммутационная износостойкость определяется таким числом включений и отключений цепи с током, после которого требуется замена контактов. Современные контакторы должны иметь коммутационную износостойкость порядка (2-3) · 106 операций (некоторые выпускаемые в настоящее время контакторы имеют коммутационную износостойкость 106 операций и менее).
Собственное время включения состоит из времени нарастания потока в электромагните контактора до значения потока трогания и времени движения якоря. Большая часть этого времени тратится на нарастание магнитного потока. Для контакторов постоянного тока с номинальным током 100 А собственное время включения составляет 0,14 с, для контакторов с током 630 А оно увеличивается до 0,37 с.
Собственное время отключения – время с момента обесточивания электромагнита контактора до момента размыкания его контактов. Оно определяется временем спада потока от установившегося значения до потока отпускания. Временем с начала движения якоря до момента размыкания контактов можно пренебречь. В контакторах постоянного тока с номинальным током 100 А собственное время отключения составляет 0,07, в контакторах с номинальным током 630 А – 0,23 с.
Номинальный ток контактора представляет собой ток, который можно пропускать по замкнутым главным контактам в течение 8 ч без коммутаций, причем превышение температуры различных частей контактора не должно быть больше допустимого (прерывисто-продолжительный режим работы). Номинальный рабочий ток контактора – это допустимый ток через его замкнутые главные контакты в конкретных условиях применения. Так, например, номинальный рабочий ток контактора для коммутации асинхронных двигателей с короткозамкнутым ротором выбирается из условий включения шестикратного пускового тока двигателя.
Номинальным напряжением называется наибольшее напряжение коммутируемой цепи, для работы при котором предназначен контактор. Вспомогательные контакты должны коммутировать цепи электромагнитов переменного тока, у которых пусковой ток может во много раз превышать установившийся.
Контактор имеет следующие основные узлы: контактную систему, дугогасительное устройство, электромагнит и систему вспомогательных контактов. При подаче напряжения на обмотку электромагнита контактора его якорь притягивается. Подвижный контакт, связанный с якорем электромагнита, замыкает или размыкает главную цепь. Дугогасительное устройство обеспечивает быстрое гашение дуги, благодаря чему достигается малый износ контактов. Система вспомогательных слаботочных контактов служит для согласования работы контактора с другими устройствами.
Контакторы постоянного тока коммутируют цепь постоянного тока и имеют, как правило, электромагнит также постоянного тока.
Контакторы переменного тока коммутируют цепь переменного тока. Электромагнит этих контакторов может быть выполнен либо для работы на переменном токе, либо для работы на постоянном токе. Способность аппарата обеспечивать работу при большом числе операций характеризуется износоустойчивостью. Различают механическую и электрическую износоустойчивость.
Механическая износоустойчивость определяется числом включений-отключений контактора без ремонта и замены его узлов и деталей. Ток в цепи при этом равен нулю. К современным контакторам предъявляется очень высокое требование по механической износоустойчивости (10-20) · операций.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46