Для расчета теплоты в зоне сварки делают ряд допущений. Так, принимают, что средняя температура в цилиндре, диаметром dЭ, который приближенно равен диаметру ядра, и высотой, равной суммарной толщине двух деталей 2s, принимается равной температуре плавления ТПЛ. Считается, что заметное повышение температуры металла в деталях из-за отвода в них теплоты Q2 наблюдается на расстоянии х2 от границы цилиндра, которое определяется временем сварки tСВ и коэффициентом температуропроводности металла аМ:
.
При этом принимается, что средняя температура кольца шириной х2 вокруг цилиндра диаметром dЭ, равна .
Определение потерь тепла в электроды производится аналогичным образом. При этом принимается, что за счет тепла Q3 нагревается до средней температуры, равной , участок электрода длиной
,
где аЭ — коэффициент температуропроводности металла электродов.
С учетом сказанного сокращенное уравнение теплового баланса
в развернутом виде описывают обычно следующим выражением [3]:
,(2.27)
где γМ и γЭ — плотность металла свариваемых деталей и электродов; сМ и сЭ — теплоемкость металла свариваемых деталей и электродов; k1 — коэффициент, который учитывает неравномерность распределения температуры в кольце; k2 — коэффициент, учитывающий влияние на теплоотвод формы рабочей части электродов.
С увеличением времени точечной сварки доля теплоты, отводимой в окружающий металл и электроды, всегда увеличивается, т. е. с увеличением времени сварки всегда уменьшается КПД процесса нагрева [181...184].
Количество теплоты QЭЭ, которое требуется для образования точечного сварного соединения заданных размеров, используют в основном для приближённого определения силы сварочного тока IСВ по зависимости (1.11), обеспечивающего выделение этой теплоты.
2.5. Объемная
пластическая деформация металла в зоне
формирования точечного сварного соединения
Объемная пластическая деформация (ПД) металла при точечной сварке — это один из основных термодеформационных процессов, протекающих в зоне формирования соединения и способствующих его образованию. Она вызывается как внешними факторами, в первую очередь силовым воздействием на детали электродов, так и внутренними факторами, в частности, напряжениями, возникающими при несвободном тепловом расширении (дилатации) металла в зоне сварки между электродами сварочной машины. Пластическое течение металла имеет место на протяжении всего процесса сварки — от формирования начальных контактов, до проковки соединения при его охлаждении. На стадии нагрева во время действия импульса сварочного тока металл в зоне сварки деформируется в основном пластически [3, 16].
Пластическая деформация металла в зоне сварки оказывает решающее влияние на характер электрического и температурного полей, а также на процесс формирования ядра расплавленного металла. В первую очередь, величина объемной пластической деформации влияет на процесс нагрева, так как определяет плотность тока в зоне сварки через площади контактов деталь–деталь и электрод–деталь. При этом нагрев металла в зоне формирования соединения, в свою очередь, оказывает влияние на его пластическую деформацию через изменение сопротивления пластической деформации. В результате такой взаимосвязи и такого взаимовлияния описанных выше процессов осуществляется как бы саморегулирование процесса точечной сварки. Это предполагает, что при устойчивом процессе в зоне сварки должно существовать определенное соответствие между нагревом в ней металла и пластической его деформацией [3, 183, 185…187].
Охлаждение металла в зоне сварки и его кристаллизация в ядре сопровождается температурным и фазовым уменьшением объема, которое приводит на этой стадии формирования соединения к возникновению неравномерного поля остаточных растягивающих напряжений. Это является одной из основных причин образования в соединениях дефектов усадочного характера (трещин, пор, раковин). Только пластическое течение металла в этот период может компенсировать его усадку и предотвратить образование вышеуказанных дефектов сварных соединений [3, 16, 62, 188, 189].
Сведения о пластических деформациях при КТС носят преимущественно качественный характер. Это обусловлено как трудностями их экспериментальных исследований, в первую очередь, из-за закрытого характера зоны сварки и малого ее объема [3, 16, 62, 188, 189], так и трудностями точной математической постановки и решения задачи по определению параметров напряжений и деформаций в условиях динамичного процесса формирования соединений [190...195]. Даже численные методы решения дифференциальных уравнений с применением ЭВМ не позволяют пока достаточно точно определить все сложные взаимовлияния и взаимосвязи термодеформационных процессов, протекающих в зоне формирования соединения [169…172, 174...176, 196...198].
В этой связи весьма перспективным представляется использование для исследований термодеформационных процессов при КТС приближенных теорий напряжений и деформаций, а также расчетно-экспериментальных методов, основы которых изложены, например, в работах [199, 200].
2.5.1. Методики экспериментальных исследований макродеформаций металла в зоне сварки
Известные экспериментальные исследования процессов макропластических деформаций металла в зоне формирования соединения при КТС проводились в основном по трем методикам.
По первой из них параметры пластической деформации металла в зоне формирования точечного сварного соединения определяли на образцах с направленной текстурой, как, например, в работе [185]. Суть этой методики заключается в следующем.
Свариваемые образцы изготовляются из заготовок, имеющих ярко выраженную, направленную текстуру (проката, поковок). При этом плоскость поверхностей деталей должна быть либо перпендикулярной, либо параллельной к направлению линий текстуры. О деформации металла в зоне сварки судят по искривлениям текстурных линий (рис. 2.28). Однако эта методика не позволяет количественно определять параметры деформаций металла в зоне сварки и отражает лишь качественную картину пластического течения металла в процессе формирования соединения.
По второй методике [62, 189] исследования деформаций при КТС проводились на моделях деталей, рассеченных по плоскости оси электродов и изготовленных из упругих материалов, в частности, из резины. Основное ее достоинство заключается в том, что она относительно легко осуществима технически. Однако корректность полученных результатов вызывает сомнения, поскольку в этой методике не соблюдается один из
основных принципов пластического деформирования металла: неизменность объема металла при пластическом его течении.
Третья методика — это
так называемая «методика координатных сеток», которая широко используется для
исследований процессов ПД, например, при обработке металлов давлением.
Экспериментальные исследования процессов пластической деформации металла в зоне
формирования соединения при контактной точечной сварке по этой методике
проводятся на натурных образцах с предварительно нанесенной координатной
сеткой, технология изготовления которых предложена и описана в работе [128].
При исследованиях пластических деформаций в плоскостях контактов деталь–деталь и электрод–деталь координатная сетка наносилась на поверхности образцов (рис. 2.29). После этого такие образцы сваривались по обычной технологии точеной сварки, соответствующей материалу деталей и их толщине, а после сварки соединения разрушались. Для выявления динамики изменения параметров макропластических деформаций при КТС по изменению координатной сетки процесс сварки прерывали через заданные промежутки времени, кратные 0,02 с.
При исследовании деформаций в плоскости оси электродов образцы изготовлялись разъемными и координатная сетка наносилась на торцевые поверхности образцов. Перед сваркой образцы совмещались торцевыми поверхностями и зажимались в специальном приспособлении. В этом случае сварку осуществляли так, чтобы плоскость совмещенного разъема образцов совпадала с осью электродов. После сварки такие образцы разрушались по торцевому разъему и производились измерения искажений координатной сетки (рис. 2.30).
Обработка результатов
экспериментов в части количественного измерения параметров пластической
деформации осуществлялась по методике, описанной в работах [201, 202]. При этом
деформация оценивалась только по деформации сторон координатной сетки. Оценить
же сдвиговые деформации металла в различных точках зоны сварки затруднительно
из-за высокой погрешности измерений угла сдвига, которая в данном случае
получается соизмеримой с его величиной.
Относительные смещения металла в зоне сварки и относительные его деформации по координатам z и r в соответствии с принятой методикой оценивались по следующим зависимостям:
, (2.28)
, (2.29)
где l0 и l1 — расстояния от базы измерений до и после сварки (при измерении радиальных смещений по координате r в плоскости сварочного контакта и в плоскости оси электродов за базу принималась ось электродов, а при измерении осевых смещений по координате z за базу принималась плоскость свариваемого контакта); h0 и h1 – длина сторон координатной сетки до и после сварки.
2.5.2. Характер пластических деформаций
металла в зоне сварки
на стадии нагрева
Проведенными экспериментальными исследованиями [203, 204] установлено, что радиальные (координата r) относительные деформации и смещения металла в плоскости поверхностей свариваемых деталей, в частности в плоскостях контактов электрод–деталь и деталь–деталь (рис.2.31), а также в плоскости оси электродов (координата z) распределяются неравномерно как по площади контактов, так и по толщине деталей.
При точечной сварке легких сплавов относительные радиальные (по координате r) смещения металла в плоскости контакта деталь–деталь (рис. 2.31, а, в, д) не превышают 2...4 %. Причем, зона пластических деформаций распространяется за контур уплотняющего пояска не больше, чем на 5...15 % от его диаметра dП. В плоскости контакта электрод–деталь величину относительных осевых (по координате z) смещений можно считать вообще незначительной, так как они в течение процесса сварки не превышает 0,5...1 % (рис. 2.31, б, г, ж).
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37