Основы теории и технологии контактной точечной сварки

.

Для распределения температуры в зоне сварки Tz и Tr по координатам z и r (рис. 3.18), рассчитанного по зависимости (3.36) для момента окончания нагрева, значения средней температуры по координатам z и r в пределах ядра расплавленного металла (кривая 1), на оси электродов от границы ядра hЯ до поверхности листа, толщиной s (кривая 2), в плоскости свариваемого контакта между границами ядра dЯ и пояска dП (кривая 3), рассчитанные по зависимостям (3.42) и (3.43), а также значение средней температуры в плоскости z r по площади зоны сварки, которая ограничена уплотняющим пояском dП и поверхностью свариваемых деталей, рассчитанное по зависимости (3.44) при z1 = r1 = 0, z2 = s, r2 = dП, вполне соответствует существующим представлениям о нагреве металла в процессе формирования точечного сварного соединения.


Таким образом, данный расчетно-экспериментальный метод оценки теплового состояния зоны КТС на стадии нагрева во время действия импульса сварочного тока при относительной простоте расчета, позволяет достаточно точно оценить температуру в любой точке зоны сварки в любой момент процесса формирования точечного сварного соединения. При этом зависимости, выражающие изменение температуры по координатам и времени, являются непрерывными аналитическими функциями и позволяют производить операции математического анализа.

3.4. Математические модели силового взаимодействия деталей
в площади свариваемого контакта при формировании соединения

Согласно принятым моделям термодеформационного равновесия процесса точечной сварки без обжатия (рис. 3.1) и с обжатием (рис. 3.3) периферийной зоны соединения силовое взаимодействие деталей, сжимаемых электродными устройствами, в площади контура уплотняющего пояска осуществляется металлом, который находится в твёрдой (до начала плавления во всей площади контура уплотняющего пояска) или в твёрдой (после начала плавления в площади уплотняющего пояска, окружающего ядро) и жидкой (в площади ядра расплавленного металла) фазах. Поэтому основными задачами математического моделирования взаимодействия деталей в площади свариваемого контакта при формировании соединения является определение напряжений в площадях контактов, в которых металл находится в твёрдой фазе, и давления в ядре.

3.4.1. Методика расчета среднего значения нормальных напряжении в контакте деталь - деталь

Точно рассчитать распределение напряжений в контактах при КТС по-видимому не представляется возможным из-за сложности и динамичности, протекающих в них термодеформационных процессов. Приближённое решение данной задачи [206, 217, 218] основано на допущении, что характер распределения напряжений в контакте деталь–деталь при точечной сварке подобен характеру распределения напряжений в контакте пуансон–деталь при осадке полосы. Это предположение сделано на основании анализа опубликованных работ С. И. Губкина, Е. П. Унксова, В. В. Соколовского и других исследователей, посвященных определению напряжений в контактах. Ими установлено, что в общем случае в площади контакта имеется три участка, которые отличаются распределением касательных напряжений (рис. 3.19). Качественно такой характер распределения нормальных напряжений в контактах электрод–деталь и деталь–деталь при точечной сварке подтверждается экспериментами по затеканию (пластической деформации) металла в узкую щель в электроде (рис. 3.20) и характером деформации периодического рельефа на поверхности детали (рис. 3.21).

Можно предположить, что и при сварке в площади контакта в момент времени t имеется три участка (рис 3.19 и 3.22), отличающихся распределением касательных напряжений τ, подобно осадке полосы [219]:

1) зона скольжения (участки a1b1 и b2a2) ;

2) зона торможения (участки b1c1 и c2b2) ;

3) зона застоя (участки c1о и оc2) ;

где σZ — напряжения, нормальные к плоскости свариваемого контакта;
μ — коэффициент трения; r — радиальные координаты точек в плоскости поверхности деталей.


Наличие таких участков в контактах при КТС экспериментально подтверждается, например, в работе [129].

Решением приближенного уравнения равновесия, предложенного
Е. П. Унксовым [219, 220],

,

где s — толщина детали; σz, σr, и σθ — соответственно, нормальные относительно плоскости свариваемого контакта, радиальные и окружные напряжения; совместно с условием пластичности Губера – Мизеса

,                                       (3.45)

где σД — это сопротивление пластической деформации металла в области уплотняющего пояска; получены функции, описывающие изменение нормальных напряжений σ1Z, σ2Z, σ3Z на различных участках контакта, которые, применительно к условиям точечной сварки, имеют следующий вид:

-                   первый участок при rbrra

;                            (3.46)

-                   второй участок при rcrrb

;                             (3.47)

-                   третий участок при 0 rrc

.                     (3.48)

Здесь μ – коэффициент трения; dП – диаметр контурной площади контакта (уплотняющего пояска).

Координату границы зоны торможения rb можно определить по зависимости, приведенной в работе [221], которая, применительно к условиям точечной сварки имеет вид

.                               (3.49)

Поскольку при КТС в контакте электрод–деталь и, в особенности, деталь–деталь наблюдается схватывание металла [128, 129], то коэффициент трения μ можно принять равным 0,5. Тогда, согласно (3.49) при μ = 0,5 — координата , т. е. зона скольжения (участки a1b1 и a2b2) отсутствуют, а зона торможения (участки b1c1 и b2c2) доходит до границы контакта.

Расчеты показали, что, пренебрегая уменьшением касательных напряжений в зоне застоя (с1о и ос2 (см. рис. 3.19)), получаем абсолютную ошибку при определении средней величины нормальных напряжений σСР, не превышающую 5...10 %, причем в свариваемом контакте только до начала плавления металла. Поэтому, чтобы упростить расчеты, можно допустить, что распределение касательных напряжений τ в области 0 rdП/2 равномерно и зона торможения распространяется до центра контакта, т. е. rС = 0.

Тогда по известной теореме о среднем, после подстановки в нее зависимости (3.47), среднее значение сжимающих нормальных напряжений в свариваемом контакте σСРt в любой момент процесса формирования соединения t можно определить следующим образом

,                                      (3.50)

где r1t и r2t – соответственно нижний и верхний пределы интегрирования.

При КТС нижний r1t и верхний r2t пределы интегрирования изменяются в течение процесса формирования соединения. До момента начала образования ядра контакт твердого металла осуществляется по всей площади уплотняющего пояска. Поэтому в этот период пределы интегрирования r1t = 0 и r2t = dПt /2 и интегрирование зависимости (3.47) следует проводить в интервале 0…dПt /2. При появлении ядра контакт твердого металла осуществляется по уплотняющему пояску шириной bПt = dПt /2 – dЯt/2. Следовательно, интегрирование зависимости (3.47) в этот период следует проводить в интервале dЯt /2…dПt /2. Поскольку до начала плавления металла dЯt = 0, то интервал интегрирования dЯt /2…dПt /2 может быть принят для любого момента КТС при 0 ≤ ttСВ. Тогда, после подстановки в (3.50) зависимостей (3.47) и (3.49) количественное значение σСРt можно определить следующим интегральным выражением

,

из которого после вычисления интеграла с вышеуказанными переменными пределами интегрирования получаем формулу для приближенных количественных расчетов среднего значения нормальных напряжений σСРt в контакте деталь–деталь в любой момент t процесса формирования соединения

.                             (3.51)

Здесь, для момента t процесса формирования соединения, σДt — сопротивление деформации металла; dЯt и dПt — текущие значения диаметров, соответственно, ядра и уплотняющего пояска; Кσ – коэффициент, характеризующий неравномерность распределения в площади контакта нормальных напряжений по координате r, который для условий КТС следует принимать в пределах 0,25...0,5.

Согласно выражению (3.47) напряжения σ2Z на краю контакта при  во всех случаях стремятся к значениям сопротивления деформации металла , а в центре контакта при  они растут с увеличением отношения диаметра контакта к толщине детали : . Это изменение неравномерности распределения напряжений по координате r, как следует из формулы (3.51), существенно влияет и на средние их значения σСРt в площади контакта. Так, минимальные значения  получаются при , в случае отсутствия ядра расплавленного металла, или же при уменьшении ширины уплотняющего пояска, т. е. разности  после начала расплавления металла. Причем, это влияние увеличивается с уменьшением толщины свариваемых деталей вследствие увеличения отношения dПt /s.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать