Основы теории и технологии контактной точечной сварки

Относительные радиальные (по координате r) деформации металла в плоскости контактов электрод–деталь и деталь–деталь  распределяются неравномерно. При этом они даже меняют знак.

В контуре контакта деталь–деталь координатная сетка растягивается. Наибольшая степень деформаций растяжения , которая достигает 1,5...3 %, наблюдается на оси электродов. На периферии контакта и за его пределами металл сжимается. Причем сжатие металла локализовано на самой периферии уплотняющего пояска и в относительно узком кольце вокруг контактов деталь–деталь, ширина которого не превышает 5...15 % от их диаметров. Здесь степень деформаций сжатия металла весьма значительна и достигает 7...15 %.

В плоскости контакта электрод–деталь в направлении оси электродов (по координате z) металл сжимается (рис. 2.31, б, г, ж). Однако степень деформации  металла по оси z относительно не велика. Она даже на периферии контакта, не превышает 2...3 %.

Вместе с тем, относительные осевые смещения  металла в плоскости оси электродов по координате z весьма значительны. Наибольшие относительные осевые смещения  металла в плоскости оси электродов наблюдаются в центре контакта. Их величина к концу процесса достигает значений 8...13 % (рис. 2.31, ж). По толщине детали их величина относительно стабильна. Это объясняется тем, что осевые относительные деформации  металла не велики и, как показали исследования, не превышают 0.5...3 %. Причем, наименьшие значения они имеют в срединной полосе свариваемых деталей.


Результаты подобных измерений весьма приближённы. Но всё же они позволяют установить качественную картину пластических деформаций металла в зоне сварки, которую можно описать следующей физической моделью.

При КТС металл в зоне сварки нагревается, в результате чего в ее объеме VД (рис. 2.32), деформируемом пластически (выделен темным цветом), он переходит в пластическое состояние, а в объеме ядра VЯ, нагретом выше температуры плавления, он расплавляется. Вследствие этого объём металла в зоне сварки увеличивается (проявляется так называемый эффект дилатации) за счет температурного расширения, а в объеме ядра — дополнительно и за счет изменения фазового состояния. Своеобразная форма зоны формирования соединения, неравномерный нагрев металла в ней, его дилатация и разупрочнение, а также схема силового воздействия на детали определяют неравномерное распределение нормальных и касательных напряжений в контактах и в объеме зоны сварки. В результате наблюдается направленное течение металла (показано стрелками), в основном, к границам контакта деталь–деталь. Причем интенсивные пластические деформации в основном локализованы в объёме VД1 (заштрихован косой линией), расположенном в области уплотняющего пояска, диаметр dД которого на 5...15 % превышает диаметр dП уплотняющего пояска. Объём же металла VД2 (заштрихован сеткой), расположенный над ядром, «проседает» в объём ядра практически не деформируясь.

Такой характер пластических деформаций приводит к образованию рельефа в контакте деталь–деталь (уплотняющего пояска) диаметром dП, а также зазоров между деталями в нахлестке и вмятин от электродов сВМ на внешних поверхностях.

Таким образом, за цикл сварки в зоне формирования соединения последовательно во времени и одновременно протекает ряд термодеформационных процессов, например, таких как деформирование свариваемых деталей и их сближение, микроскопические деформации металла в контактах и макроскопические в зоне формирования соединения, формирование механических и электрических контактов, нагрев и расплавление металла, его кристаллизация на последней стадии формирования соединений, которые и определяют конечный результат сварки.


3. Математические модели основных термодеформационных процессов, протекающих в зоне точечной сварки


Нагрев и пластическая деформация металла в зоне сварки относятся к термодеформационным процессам, наиболее значимо влияющим на устойчивость процесса формирования соединения и во многом предопределяющим его конечные результаты. Это можно считать признанным всеми специалистами. Если нагреву посвящено много экспериментальных и теоретических исследований, предложено большое количество расчетных методик определения его параметров, как аналитических, так и численных, то сведения о процессах пластических деформаций носят в основном самый общий характер. Практически отсутствует их математическое описание (см. раздел 2.5). Вместе с тем, очевидно, что при отсутствии математических моделей этих процессов, методик расчетов количественных значений их параметров, ни о каком научно обоснованном программировании параметров режима точечной сварки не может быть и речи, не говоря уже о создании систем автоматического проектирования технологических процессов (САПР ТП).

Оптимизация параметров силового и энергетического воздействия на детали в современных способах КТС, в том числе и с программированием их параметров режима, затруднительна без определения количественного соотношения между параметрами основных термодеформационных процессов, протекающих в зоне формирования сварного соединения. Определение же количественного соотношения между параметрами основных термодеформационных процессов, протекающих в зоне сварки, невозможно без формального математического их описания, то есть без разработки их математических моделей.

Точное описание формальным языком изменения параметров термодеформационных процессов, протекающих в зоне формирования соединения, а также их взаимозависимости и взаимовлияния, затрудняются их сложностью и динамичностью. Поэтому наиболее рациональным методом решения поставленной задачи является метод идентификации реальных процессов с идеализированными моделями, которые представляется возможным описать математическим языком.

Разработка математической модели термодеформационного равновесия процесса точечной сварки по существу представляет собой математическое описание физической модели процесса формирования соединения, описанной выше в п. 2.5.2. Иными словами, математическая модель термодеформационного равновесия процесса КТС — это математическое описание напряженно-деформированного состояния металла в зоне сварки при формировании точечного сварного соединения. Она основана на результатах экспериментальных исследований процесса сварки, в частности, на вышеуказанном выводе о том, что между тепловыми и деформационными процессами в зоне формирования соединения должно существовать определенное равновесное соотношение, которое зависит от режима сварки, теплофизических свойств металла и геометрических параметров деталей и электродов. При этом подразумевается, что при условиях формирования точечного сварного соединения, близких к условиям оптимальным, система электрод–детали–электрод в силовом отношении замкнута, и силы, действующие на каждый ее элемент, уравновешены в любой момент процесса сварки. Нагрев, разупрочнение, плавление, дилатация и пластическая деформация металла в зоне сварки не нарушают этого равновесия. Выплески же или непровары являются следствием нарушения этого равновесного состояния, вызванного воздействием каких-либо возмущающих факторов. Экспериментальным подтверждением сказанного выше являются как пространственная неподвижность зоны сварки, так и изменение площадей контактов деталь–деталь и электрод–деталь в процессе формирования соединения.

3.1 Термодеформационное равновесие силовой системы
электрод - детали – электрод при традиционных способах сварки

Математическая модель [205, 206], описывающая силовое взаимодействие свариваемых деталей и электродов в контактах деталь–деталь и электрод–деталь, по существу представляет собой математическое описание силового равновесия деталей в процессе формирования соединения при контактной точечной сварке.

Рассмотрим элемент системы электрод–детали–электрод — одну свариваемую деталь, в равновесии в какой-либо фиксированный момент времени t после момента tНП начала плавления металла в контакте деталь–деталь до момента tСВ окончания его нагрева, т. е. при  (рис 3.1). Равновесие свариваемой детали в дискретный момент t будем рассматривать в цилиндрической системе координат.

Пусть в какой-либо дискретный момент времени t распределение нормальных, относительно плоскости свариваемого контакта, напряжений по площади SЭt контакта электрод–деталь описывается функцией:

[1],                                            (3.1)

а по площади SПt свариваемого контакта, внутри контура уплотняющего пояска, функцией:

.                                            (3.2)

В свариваемых деталях наблюдается растекание сварочного тока и угол α между линиями тока j в приконтактных областях деталей меньше 180°. А поскольку ток в них протекает в противоположных направлениях, то между этими линиями тока действуют элементарные электродинамические силы отталкивания Fj, которые стремятся раздвинуть и свариваемые детали. Пусть их распределение по площади Sjt  растекания тока, приведенное к плоскости свариваемого контакта и направленных нормально к ней, описывается функцией:


.                                             (3.3)

В работах [3, 16, 207] показано, что давление расплавленного металла в ядре имеет градиент по координате r, который обусловлен воздействием магнитного поля на жидкий металл. Поэтому распределение давления по площади SЯt ядра в плоскости свариваемого контакта в общем случае следует описывать функцией координат r и φ:

.                                             (3.4)

При сближении свариваемых деталей из-за упругой их деформации в них возникают напряжения. Составляющие этих напряжений, нормальные к плоскости свариваемого контакта, препятствуют сближению свариваемых деталей, т. е., как показано в п. 2.1.2, они уравновешивают часть усилия сжатия электродов. Пусть распределение этих напряжений по цилиндрической поверхности, образующая которой параллельна оси электродов, а направляющей является граница контакта деталь–деталь, и ограниченной плоскостями поверхностей свариваемых деталей, описывается функцией:

.                                           (3.5)

Для того, чтобы эта система, имеющая одну степень свободы — возможность перемещения в направлении оси электродов, находилась в равновесии, необходимо, чтобы сумма проекций всех сил на координату z равнялась нулю. В данном случае это условие равновесия можно записать следующим образом:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать