Основы теории и технологии контактной точечной сварки

,  и .

Тогда, приняв допущения, что зона интенсивных пластических деформаций при КТС ограничена поверхностями деталей в контактах электрод–деталь и цилиндрической поверхностью, образующая которой параллельна оси электродов, а направляющей является контур контакта деталь–деталь, интеграл в зависимости (3.68), который определяет объем деформируемого металла Vt, при толщине деталей s и диаметре уплотняющего пояска dПt будет равен:

.                    (3.69)

Сделанные допущения, в частности, о том, что температурный коэффициент объемного расширения металла βT не зависит от температуры, т. е. βT = const, позволяют упростить вычисление первого тройного интеграла (в квадратных скобках) в зависимости (3.68), который определяет приращения  деформируемого объема металла Vt, вследствие его температурного расширения (зависимость 3.63). Тогда, учитывая, что зона интенсивных пластических деформаций при КТС осесимметрична по координате r и симметрична относительно плоскости свариваемого контакта по координате z, этот интеграл можно преобразовать к следующему виду:

.           (3.70)

Очевидно, что тройной интеграл в круглых скобках аналогичен зависимости (3.69), а выражение с двойным интегралом в квадратных скобках аналогично зависимости (3.44), если в нее подставить следующие пределы интегрирования: z1 = 0, z2 = s, r1 = 0, r2 = dПt /2. Тогда, с учетом (3.44) и (3.69), а также того, что температурный коэффициент объемного расширения βT и температурный коэффициент линейного расширения αT связаны между собой следующим соотношением: βT = 3αT [123], зависимость (3.70) можно преобразовать к следующему виду:

.               (3.71)

Допущение об осесимметричности зоны сварки значительно упрощает вычисление и второго тройного интеграла (в квадратных скобках) в зависимости (3.68), который определяет приращение  объема металла ядра при его плавлении. В этом случае объем ядра в любой момент его формирования можно рассчитать как объем тела вращения. Объем ядра VЯt (рис. 3.30) можно представить как объем тела, ограниченного изотермой температуры плавления, выраженной функцией , при вращении ее вокруг координаты z. Тогда тройной интеграл в зависимостях (3.64) и (3.68) можно преобразовать следующим образом [208]:

,            (3.72)

где z1 и z2 — координаты точек, в которых изотермы температуры плавления пересекают ось электродов.

Функцию, выражающую зависимость координаты r от координаты z в уравнении изотермы температуры плавления: , можно получить из выражения (3.39). После преобразований эта функция может быть записана в следующем виде:

.

Подставив ее в зависимость (3.72) и вычислив интеграл при переменных пределах интегрирования  и , в которых значение высоты ядра hЯt выражено формулой (3.40), получаем:

. (3.73)

В практике точечной сварки наиболее распространены электроды (рис. 3.31) со сферической рабочей поверхностью (рис. 3.31, а), а также конические (рис. 3.31, б) и цилиндрические (рис. 3.31, в) электродами с плоскими рабочими поверхностями.

Все они являются телами вращения, а потому объемы , вытесняемые электродами при их вдавливании в поверхности деталей, могут быть определены не только по зависимостям (3.65) или (3.66), но и гораздо проще по зависимости (3.72). Однако и в этом нет необходимости, так как общеизвестны формулы, согласно которым вытесняемые объемы равны:

-      при сферической рабочей поверхности электрода

,       (3.74)

-      при конической форме электрода

 ,    (3.75)

-      при цилиндрической форме электрода

,                        (3.76)

где ct — глубина вдавливания электродов в момент времени t; RЭ — радиус сферической рабочей поверхности электрода; dЭ — диаметр плоской рабочей поверхности электрода; dOt — диаметр отпечатка (контакта) электрод-деталь в момент времени t.

Вторым слагаемым в зависимости (3.74) можно пренебречь потому, что глубина вдавливания электродов при КТС обычно не превышает 10...20 % от толщины s свариваемых деталей, т. е. , а радиусы электродов со сферической рабочей поверхностью , при которых  и практически не влияет на результат расчета объема . По этой же причине можно пренебречь разностью между dЭ и dOt в зависимости (3.75), так как при  и , т. е. при , и определять объем  по зависимости (3.76) как при цилиндрическом, так и коническом электродах.

Наиболее сложной задачей при расчетах вытесненного электродами объема  по зависимостям (3.74) и (3.76) является определение глубины вдавливания электродов ct в процессе формирования соединения. В настоящее время можно прогнозировать лишь качественный характер изменения этого параметра. Определить же значения ct расчетным путем в процессе КТС с учетом напряженно-деформированного состояния металла области зоны сварки, прилегающей к электроду, пока не удается из-за сложности протекающих там термодеформационных процессов. Поэтому в данной методике значения ct приближенно определяются через диаметр контакта электрод–деталь. С точностью до 0,01 % значения ct можно выразить через диаметр отпечатка dо (контакта электрод–деталь) при сварке электродами со сферическими рабочими поверхностями [84]: .

Экспериментальные исследования показали, что диаметр dЭt контакта электрод–деталь при точечной сварке изменяется подобно изменению диаметра dПt контакта деталь–деталь (рис.3.32). При этом установлено, что в начале процесса КТС dЭt, на 5...15 % больше dПt, а в конце процесса — наоборот, dПt примерно на столько же больше, чем dЭt. Поэтому, для приближенных расчетов можно принять, что dЭt и dПt изменяются при сварке одинаково. Тогда изменение значений глубины вмятин от электродов в поверхностях деталей ct в процессе сварки электродами со сферической рабочей поверхностью при расчетах вытесняемого ими объема металла  по зависимости (3.74) можно выразить через изменение диаметра уплотняющего пояска следующим образом:

.                    (3.77)

Практика сварки электродами со сферической и плоской рабочими поверхностями показывает, что при сварке на режимах близких к оптимальным, например, рекомендованных в работах [3, 9, 11, 15...17], глубина их вдавливания в поверхности деталей в процессе формирования соединения изменяется примерно одинаково. Поэтому, при приближенных технологических расчетах значений  по зависимости (3.76) величину ct можно определять по зависимости (3.77) и для условий сварки электродами с плоской рабочей поверхностью, если подставить фиктивное значение RЭ, рекомендованное для этой же толщины деталей, например, в работах [3, 11, 16].

Тогда зависимость (3.68) для расчета степени пластической деформации металла в зоне сварки εt в любой момент t процесса формирования соединения на стадии нагрева с учетом сказанного выше и зависимостей (3.71), (3.73) и (3.77) можно преобразовать к следующему окончательному виду, удобному для практических расчетов [210, 217]:

 (%), (3.78)

где для момента времени t, αТ — температурный коэффициент линейного расширения; azt, art и с — коэффициенты (см. зависимость 3.36); tНП время начала плавления металла (см. зависимость 3.37);  — функция ошибок (см. зависимость (3.42)... (3.44)); s толщина деталей; dПt — диаметр уплотняющего пояска; β* — коэффициент увеличения объема металла ядра при его плавлении;  — приращение степени пластической деформации εt металла зоны сварки при вдавливании электродов, равное:

при сферической рабочей поверхности электрода

,

при конической и цилиндрической форме электрода

;

RЭ и dЭ – радиус (при сферической) и диаметр (при плоской) рабочих поверхностей электродов; сt — глубина вдавливания электродов в поверхности деталей (см. зависимость 3.77).

Таким образом, зависимость (3.78) позволяет при технологических расчетах приближенно определить степень пластической деформации εt металла в процессе формирования точечного сварного соединения в любой его момент t на стадии нагрева.

Скорость деформации, как это общепринято в теориях пластичности и обработки металлов давлением — это изменение степени деформации εt в единицу времени [220, 221, 227,228], т. е.:

.                                               (3.79)

Размерность скорости деформации зависит от размерности ее степени и может быть  или : .

В соответствии с выражением (3.79) скорость деформации можно определить как производную от функции, описывающей изменение по времени степени пластической деформации металла зоны сварки, т. е. производную от зависимости (3.78). Однако в связи с тем, что она содержит не дифференцируемую аналитически erf – функцию, то точное аналитическое определение скорости деформации по (3.79) невозможно. Даже при приближенном дифференцировании функции  [216] получается очень громоздкая и неудобная для практических расчетов зависимость скорости деформации от времени. Поэтому скорость деформации ut для любого момента t процесса сварки рациональнее определять численным дифференцированием зависимости (3.78) , т. е. [210, 217]:

,                                   (3.80)

где Δεt — приращение степени деформации за отрезок времени между текущим и предыдущим  моментами расчета скорости деформации .

3.5.3. Определение температуры металла в зоне пластических
деформаций

Методика, по которой рассчитывается изменение сопротивления пластической деформации металла при КТС, предопределяет осреднение температуры в объеме металла зоны интенсивных пластических деформаций. Рассчитать среднюю температуру металла пластически деформируемого в зоне сварки можно по зависимости (3.44).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать