Тогда зависимость для расчета изменения температуры по координате r в окончательном варианте имеет следующий вид
. (3.30)
Изменение температуры по координате r в момент выключения сварочного тока, рассчитанное по зависимости (3.30), также хорошо согласуется с результатами расчетов методом конечных разностей (рис.3.7, б).
Для расчетов изменения температуры в любой точке плоскости z – r зависимости (3.27) и (3.30) следует объединить. Это можно сделать, если учесть, что температурное поле неразрывно, а температура на оси электродов TZt при любом значении координаты z является максимальным значением температуры ТМ по координате r, т. е. при r = 0 значение TZt = ТМ. Из зависимостей (3.27) и (3.30) это соотношение температур по координатам z и r можно выразить следующим образом:
.
Отсюда после преобразований получаем зависимость для расчета температуры в момент времени t в любой точке плоскости z – r в пределах зоны сварки, которая имеет следующий вид:
. (3.31)
Характер изменения температурного поля по координатам z и r, рассчитанный по зависимости (3.31) в момент выключения сварочного тока, показан на рис. 3.8.
Зависимость (3.31) описывает изменение температурного поля в любой точке плоскости z – r только в отдельные дискретные моменты
времени t. Для анализа термодеформационных процессов в зоне сварки необходимо математически описать изменение температуры в каждой ее точке и по времени. Это можно сделать, если с зависимостью (3.31) функционально увязать зависимость (3.25), которая и описывает изменение тем
пературы по времени.
Определить значения коэффициентов n и c в зависимости (3.25) можно исходя из следующего.
В момент времени tНП начала плавления металла в контакте деталь–деталь температура в точке с координатами z = 0 и r = 0 равна значениям температуры плавления металла ТПЛ, т. е. при t = tНП — Tt = ТПЛ. В момент же окончания импульса тока tСВ температура в контакте деталь-деталь достигает максимальных значений ТМ, т. е. при t = tСВ — Tt = ТМ. Это позволяет составить следующую систему уравнений
,
после решения которой и находим искомые коэффициенты n и c:
, .
Тогда зависимость для расчета изменения температуры в центре контакта деталь–деталь можно записать в виде
, (3.32)
где с — коэффициент, определяемый для момента t = tСВ, т. е. по конечной высоте ядра hЯ, и равный
,
где aZ – значение коэффициента aZt, определяемого по зависимости (3.27) также для момента t = tСВ, т. е. так же по конечной высоте ядра hЯ и максимальной температуре TЭ в контакте электрод–деталь:
.
Характер изменения температуры в центре свариваемого контакта, рассчитанный по зависимости (3.32) для различных условий сварки, показан на рис.3.9. Такое изменение температуры вполне согласуется с имеющимися данными, полученными как экспериментально, так и расчетами методом конечных разностей.
Выразим значение температуры плавления металла ТПЛ в формуле (3.32) через ТМ из формулы (3.31) при z = 0 и r = 0
и подставим это выражение в зависимость (3.32). Тогда эту зависимость можно преобразовать к следующему виду:
. (3.33)
Если допустить, что характер изменения температуры по времени от нуля до ее максимальных значений в любой точке зоны формирования соединения подобен характеру изменения температуры в центре контакта деталь–деталь, то значение ТМ в зависимости (3.33) равно значению Тz,r,t рассчитанному по зависимости (3.31). Тогда зависимость (3.33) с учетом (3.31) и (3.29) можно преобразовать к следующему виду:
. (3.34)
Зависимость (3.34) описывает изменение температуры в зоне сварки на стадии нагрева по координатам z и r, а также по времени t при допущении, что характер изменения температуры по времени во всех точках зоны формирования точечного сварного соединения подобен характеру изменения температуры в центре контакта деталь–деталь.
Однако, в действительности, как показали расчеты температурных полей методом конечных разностей, характер изменения температуры по времени на периферии зоны сварки несколько иной, чем характер изменения температуры в центре контакта деталь–деталь. Это означает, что величина коэффициентов az и ar, характеризующих градиент температуры по координатам z и r, должна изменяться по времени и зависеть от условий сварки, в частности, от формы рабочей поверхности электродов.
Проведенные исследования показали, что изменение значений коэффициентов az и ar может быть аппроксимировано функцией вида [217]
, (3.35)
где at и a – текущие и конечные значения коэффициента az или ar при их изменении по времени; т и п – экспериментально определяемые коэффициенты аппроксимации.
Тогда окончательно формулу для расчета изменения температуры в любой точке зоны сварки в любой момент времени в интервале 0 < t ≤ tСВ с учетом сказанного выше можно представить в следующем виде:
, (3.36)
где t — координата времени; c, azt и art – коэффициенты, характеризующие изменение в процессе сварки градиента температуры по цилиндрическим координатам z и r и времени t:
, , ,
, ;
ТЭ — максимальное значение
температуры в контакте электрод–деталь;
tНП — время начала плавления
металла в контакте деталь–деталь; m1, n1, m2 и n2 — опытные коэффициенты, учитывающие изменение во времени
градиента температуры по координатам z и r (см. ниже табл. 3.2).
Известные трудности при расчетах температуры по зависимости (3.36) представляет точное определение для конкретных условий сварки момента начала плавления металла в контакте деталь–деталь tНП, максимальной температуры в контакте электрод–деталь ТЭ, а также коэффициентов m1, n1, m2 и n2, которые учитывают изменение во времени градиента температуры по координатам z и r. Несомненно, что при решении научно-исследовательских задач они в каждом конкретном случае должны определяться индивидуально. При приближенных технологических расчетах они могут быть определены по приведенным ниже обобщенным данным.
Наиболее просто определять момент tНП начала плавления металла в контакте деталь–деталь. Это можно осуществить прерыванием процесса сварки (на серийных машинах это можно сделать с шагом 0,02 или 0,01 с). Установлено, что с увеличением жесткости режима сварки момент начала плавления металла tНП смещается к началу процесса и существует корреляционная зависимость между значением tНП и проплавлением деталей, выраженным отношением высоты ядра расплавленного металла к суммарной толщине деталей hЯ/2s. Усредненная для способов КТС зависимость значений tНП от проплавления деталей hЯ/2s, показанная на рис. 3.10, вполне удовлетворительно описывается функцией, интерполированной по полиному Лагранжа [217]:
, (3.37)
где tСВ – время сварки; hЯ – высота ядра; s –толщина детали.
Экспериментальное определение максимального значения температуры в контакте электрод-деталь ТЭ не имеет принципиальных препятствий. Это можно сделать по любой из известных методик, например, описанным в работах [14, 207]. Основная трудность таких измерений — это их относительно большая трудоемкость.
Проведенными исследованиями и обработкой известных результатов экспериментов других исследователей, а также результатов расчетов температуры методом конечных разностей, установлено наличие корреляционной зависимости между максимальным значением температуры в контакте электрод–деталь ТЭ и относительным проплавлением деталей hЯ/2s (рис. 3.10). Зависимость удовлетворительно описывается следующей, относительно простой, аппроксимированной функцией:
, (3.38)
где ТПЛ — температура плавления металла; hЯ — высота ядра; s —толщина свариваемых деталей.
Наиболее трудоемко определение изменения в процессе формирования соединения коэффициентов azt и art, характеризующих изменение градиента температуры по координатам z и r. Для этого необходимо измерять значения температуры в характерных точках (см. рис. 3.5), а затем определять значения azt и art обратным расчетом по зависимости (3.36). Трудоемкость определения этих коэффициентов можно несколько уменьшить после начала плавления металла. Для этого экспериментально следует измерять изменение высоты hЯt и диаметра dЯt ядра, а коэффициенты azt и art так же определять обратным расчетом по зависимостям (3.40) и (3.41). Обработкой значительного числа экспериментальных данных установлено, что характер изменения коэффициентов azt и art в процессе формирования точечных сварных соединений зависит в основном от геометрии рабочей поверхности электродов и жесткости режимов сварки.
Наиболее близкий характер изменения градиента температуры по координатам z и r в процессе формирования соединения при сварке электродами со сферической рабочей поверхностью (рис. 3.11). При сварке электродами со сферической рабочей поверхностью плавление металла начинается в относительно небольшом объёме и увеличение высоты hЯt (рис. 3.11, а) и диаметра dЯt (рис. 3.11, б) ядра происходит плавно. Это обусловлено тем, что градиент изменения температуры по координатам z и r в начале процесса нагрева весьма высок, а в процессе сварки плавно уменьшается, вследствие чего уменьшаются и значения коэффициентов azt (рис. 3.11, а) и art (рис. 3.11, б).
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37