Если x<<R, то E1 = kg2p получает условие бесконечной заряженной плоскости.
E = 2pg/(4pe0) = g/(2e0).
9. Поток вектора напряженности:
] $ поле некого вектора А.
ФА = SòАdS – поток вектора А через площадку S (скалярная величина).
a - угол между вектором А и нормалью к S.
Он «+» тогда, когда угол a - острый, и «-», когда a - тупой.
Направление нормали n выбирается наружу выпуклой поверхности, а в случае плоской поверхности оговаривается заранее.
ФЕ = SòEdS = /E и S вектора/ = =SòEndS.
Если поверхность замкнутая, то поток ФЕ обозначается, как
ФЕ = ò EdS = ò (q0/(4pr2e0))dS.
Поток вектора Е через поверхность равен числу силовых линий через эту поверхность. Если поверхность замкнутая, то ФЕ = (q0/(e04pr2)).òdS = =q0/e0.
В случае, если заряд окружает неровная поверхность, то ФЕ = q0/e0 тек же, т.к. число силовых линий, пронизывающих поверхность, останется тем же самым.
Если в поверхности образовать складку, то Ф будет определяться, как поток вектора Е, а в местах складок будет компенсироваться, т.е. ФЕ = q0/e0.
10. Теорема Гаусса, уравнение Пуассона.
Рассмотрим систему зарядов:
ФЕ = оòЕndS, где En = E1 + E2 + E3 + + … = SEni, i = 1 ¸ N.
ФЕ = oòSEnidS = Sò EnidS = S(qi/e0) = = (Sqi)/e0, i = 1 ¸ N.
Теорема (Остроградского -) Гаусса: Поток вектора Е (ФЕ) через замкнутую поверхность равен алгебраической сумме зарядов, охватываемых данной поверхностью, поделенной на e0.
] заряд распределен внутри некого объема с некой объемной плотностью r, тогда q = VòrdV. ФЕ = oòEdS = /E и S – вектора/ = 1/(e0e)*VòrdV, где V – объем, в котором находятся заряды, а не весь объем области.
e - определяет св-ва среды, в которой находятся заряды (e = 1 в вакууме и/или в воздухе).
Индукция:
Д - прописное.
Д - вектор индукции, отличающийся от Е на некую константу, зависящую от среды.
Д = e0eE /Д и Е – вектора/;
Ф = оSòДdS = /Д и S – вектора/ = =VòrdV – ур-е Максвелла.
11. Бесконечная заряженная плоскость:
Она заряжена с постоянной поверхностной плотностью заряда g.
n
E
E E
E E
Выбирается некая поверхность, окруженную зарядом. Определяется вектор Е и ФЕ и точка на основании цилиндрической поверхности. oò EndS = (åq)/e0.
Данное направление Е выбирается, т.к. плоскость бесконечна и нет других преимущественных направлений. В любой точке поверхности Е постоянно и a для любой точки одинакова.
oò EndS = Sб.п.ò EndS + Sосн.ò EndS = = /aб.п. = 900/ = Sосн.ò EndS = E Sоснò dS = = E 2S = /по т-ме Гаусса/ = (1/e0).g.S.
Е = g/(2e0).
12. Поле двух разноименно заряженных плоскостей:
|
|
|
|
|
|
|
|
|
|
|
Часть векторов Е одинакова по величине, то Eå = g/e0.
13. Поле бесконечного заряженного цилиндра:
|
|
|
|
|
q – заряд на цилиндре.
q = l.t или q = g.2pR.l
E = t/(2pe0r)
E
Er
~1/r
r
R
|
|
|
|
|
n
E
ФЕ = E Sб.п.òdS = E2prl
q = rVЦ = rpR2l = 1/e0 rpR2l
E = (rR2)/(e02r).
r
l
R
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10