Общая Физика (лекции по физике за II семестр СПбГЭТУ "ЛЭТИ")

Если x<<R, то E1 = kg2p получает условие бесконечной заряженной плоскости.

E = 2pg/(4pe0) = g/(2e0).


















9. Поток вектора напряженности:

] $ поле некого вектора А.

ФА = SòАdS – поток вектора А через площадку S (скалярная величина).

a - угол между вектором А и нормалью к S.

Он «+» тогда, когда угол a - острый, и «-», когда a - тупой.

Направление нормали n выбирается наружу выпуклой поверхности, а в случае плоской поверхности оговаривается заранее.

ФЕ = SòEdS = /E и S вектора/ = =SòEndS.

Если поверхность замкнутая, то поток ФЕ обозначается, как

ФЕ = ò EdS = ò (q0/(4pr2e0))dS.

 Поток вектора Е через поверхность равен числу силовых линий через эту поверхность. Если поверхность замкнутая, то ФЕ = (q0/(e04pr2)).òdS = =q0/e0.

В случае, если заряд окружает неровная поверхность, то ФЕ = q0/e0 тек же, т.к. число силовых линий, пронизывающих поверхность, останется тем же самым.

Если в поверхности образовать складку, то Ф будет определяться, как поток вектора Е, а в местах складок будет компенсироваться, т.е.             ФЕ = q0/e0.




10. Теорема Гаусса, уравнение Пуассона.

 Рассмотрим систему зарядов:

ФЕ = оòЕndS, где En = E1 + E2 + E3 + + … = SEni, i = 1 ¸ N.

ФЕ = oòSEnidS = Sò EnidS = S(qi/e0) = = (Sqi)/e0, i = 1 ¸ N.

Теорема (Остроградского -) Гаусса: Поток вектора Е (ФЕ) через замкнутую поверхность равен алгебраической сумме зарядов, охватываемых данной поверхностью, поделенной на e0.

] заряд распределен внутри некого объема с некой объемной плотностью r, тогда q = VòrdV. ФЕ = oòEdS = /E и S – вектора/ = 1/(e0e)*VòrdV, где V – объем, в котором находятся заряды, а не весь объем области.

e - определяет св-ва среды, в которой находятся заряды (e = 1 в вакууме и/или в воздухе).

Индукция:        

Д - прописное.

Д - вектор индукции, отличающийся от Е на некую константу, зависящую от среды.

Д = e0eE  /Д и Е – вектора/;

Ф = оSòДdS = /Д и S – вектора/ = =VòrdV – ур-е Максвелла.













11. Бесконечная заряженная плоскость:

Она заряжена с постоянной поверхностной плотностью заряда g.


                                    n

                                     

                                                  E


E                                                      E    




    E                                           E        



Выбирается некая поверхность, окруженную зарядом. Определяется вектор Е и ФЕ и точка на основании цилиндрической поверхности.            oò EndS = (åq)/e0.

Данное направление Е выбирается, т.к. плоскость бесконечна и нет других преимущественных направлений. В любой точке поверхности Е постоянно и a для любой точки одинакова.

oò EndS = Sб.п.ò EndS + Sосн.ò EndS =     = /aб.п. = 900/ = Sосн.ò EndS = E Sоснò dS = = E 2S = /по т-ме Гаусса/ = (1/e0).g.S.

Е = g/(2e0).



12. Поле двух разноименно заряженных плоскостей:


Еå=g/e0

 

Еå=0

 

Еå=0

 





Е-

 

Е-

 

Е-

 





Е+

 

Е+

 

Е+

 



+g

 

-g

 
 





Часть векторов Е одинакова по величине, то Eå = g/e0.























13. Поле бесконечного заряженного цилиндра:

E=0

 

l

 

t

 

R

 
Бесконечный цилиндр R с линейной плотностью заряда t (заряд на единицу длинны).






r

 









q – заряд на цилиндре.

q = l.t или q = g.2pR.l

E = t/(2pe0r)


  E





Er



                                  ~1/r

                                                         r

               R

              

R

 

r

 

E=0

 

l

 

r

 
Бесконечный заряженный цилиндр с объемной плотностью r.


                                               n

                                                

                                                          E   

                                                           








ФЕ = E Sб.п.òdS = E2prl

q = rVЦ = rpR2l = 1/e0 rpR2l

E = (rR2)/(e02r).


 


 





                                    r

                l




                                                R

 

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать