®
® dH
dl R r
X
dH = 1/(4p)*(Idl)/R2
2pR
H = I/(4pR)*0ò dl = I/(2R)
dH ôô = dH sina = dH(R/r)
dH ôô = 1/(4p)*(Idl)/r2*R/r
Hôô = 1/(4p)*(2pR2I)/r3 = = 1/(4p)*(2pm)/r 3, x >> R ®
® Hôô = 1/(4p)*(2pm)/x3
Hôô = 1/2*(2pR3I)/(R2 + x2)3/2, если (x >> R).
®
H1
®
Hå
®
H H2
® ®
I I
1 2
Напряженность магнитного поля, создаваемая круговыми токами на точке плоскости, относительно которой витки симметричны, будет ориентирована ôô оси витков.
38. Поле соленоида:
Соленоид – цилиндрический каркас бесконечной длины с намотанным на него проводом.
®
I
1 2
1’ 2’
® ® 4 3
oòH dl = 1ò2Hdl + 2ò3Hdl + 3ò4Hdl + + 4ò1Hdl;
H1ò2dl = H*l = Inl;
H = I*n, где n – плотность обмотки.
Поле внутри соленоида однородно.
Поле снаружи соленоида равно 0.
H1’ 2’ = 0.
39. Сила Лоренца. Закон Ампера:
На заряд, движущийся в магнитном поле, действует сила, называемая магнитной и определяемая зарядом q, скоростью движения v и магнитной индукцией В. Направление вектора F определяется направлением v и В.
® ® ®
F = q*[v x B];
Это выражение было получено Лоренцем путем обобщения экспериментальных данных и получило название силы Лоренца.
®
F¶
® ®
B1 q1 v1
(*) ( )
®
B2 ®
(x) ( ) v2
q2
®
F¶
® ® ®
FЛ = q*[v x B];
® ® ® ®
FЛ = q*[v x B] + q*E
F = 1/(4pe)*(q1q2)/r2
FЛ = qvB = qv*(m0/4p)*(v/r2)*q2 (?)
B2 = m0/(4p)*(I2dl)/r2 = = m0/(4p)*(q2/dt)*(dl/r2) = m0/(4p)*(q2v)/r2
FЛ/F¶ = m0e0v2 = v2/C2.
Закон Ампера:
® ® ® ®
F = e [(u + u), B];
u - тепловая скорость;
u – скорость направленного движения;
® ® ®
<F> = e [<u>, B];
dV = S*dl;
® ® ® ®
F = <F>*nS*dl = en [<u>, B] S*dl;
® ®
en <u> = j;
® ® ®
F = [j, B] dV;
® ® ® ®
FЕД. ОБ. = F/dV = [j x B];
® ®
j*S*dl = I*dl;
® ® ®
dF = I [dl x B] – сила Ампера.
40. Контур с током в магнитном поле, вращательный момент:
a
b ® ® ®
FA FA B
(x) (*)
I
FA = IaB
M = IabB = ISB = PMB, где РМ – магнитный момент. (?) ®
FA
b ®
FA
a
® ®
(X) n (X) B
®
FA
®
FA
® ® ®
F = I [l x B];
® ® ®
M = [PM B];
Контур произвольной формы:
dh
dl1 dl2 ®
B
®
I
I a
® a1 ®
dl1(X)FЛ dl2(*) FЛ ®
® a2 B
I
dF1 = I dl1B sina1 = IB dh
dF2 = I dl2B sina2 = IB dh
dM = dF*a = Iba dh = IB dS
M = ISB = PMB
® ® ®
M = [PM B]
dA = M da = PMB sina da
dA = dWp
A = Wp = 0òaM da = -PMB cosa + const – потенциальная энергия контура с током в магнитном поле.
a = p/2 ® Wp = const = 0
Wp = -PMB cosa = -(PM B)
41. Работа по перемещению контура с током в магнитном поле:
®
I
®
+ I
l
¾ ® FA
(X) B
®
I dx
dA = FA dx = IB (l dx) = IB dS = I dФ;
dФ – поток магнитной индукции, пересекаемый проводником.
Если В (вектор) не ^ контуру, то
dA = Ibl cosa dx = IBn dS = I dФ, т.к.
dФ = B dS = B cosa dS = Bn dS
На совершение работы идет ресурс источника тока, его ЭДС.
Индукционный поток направлен противоположно току I.
1 2
® ®
I I
ФН ® Ф0 ФК
(X) B
2 2
A1 = I (ФН – Ф0)
А2 = I (Ф0 – ФK) (?)
A = A1 + A2 = I (ФК – ФН) = I DФ.
®
I
®
(X) B
A = -IBS – IBS = -2IBS.
42. Магнитное поле в веществе:
Первоначально поле в вещ-ве рассматривалось как поле от микротоков.
Движение зарядов обуславливает магнитный момент и они рассматриваются как некая система.
® ® ®
B = B0 + B’.
Введем вектор, характеризующий магнитные св-ва и связанный с (i=1åNPMi)/DV:
®
J = (i=1åNPMi)/DV
[ J ] = A/м;
J = c H, где c - магнитная восприимчивость.
cУД = c/r = [м 3/кг], где r - плотность вещ – ва.
cМОЛ = c*nКмоль [м3/Кмоль].
44. Описание магнитного поля в магнетике:
Существует 3 класса магнетиков:
1) Диамагнетики (cМОЛ < 0, 10¾7¸10¾8 (м3/Кмоль));
2) Парамагнетики (cМОЛ > 0, 10¾6¸10¾7 (м3/Кмоль));
3) Ферромагнетики (cМОЛ < 0, 103¸104 (м3/Кмоль)).
Электрическое поле в веществе может только ослабляться. В магнитном поле оно либо усиливается, либо ослабляется.
® ® ® ® ®
H = B/m0 – J = B/m0 - cH
® ®
H(1 + c) = B/m0
® ®
H = B/(m0m); m = 1 + c.
Внесем в магнитное моле магнетик:
®
B0
(X)(X)
(X)(X)
(X)(X) B’
dl микротоки
® ® ®
B = B0 + B’
B’ = m0*Il
dPM = Il*S*dl
dPM/dV = J = Il
® ® ®
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10