Учебник по физике для поступающих в ВУЗ /Экзаменационные вопросы по физике (2006-2007)/

Сила электростатического взаимодействия двух точечных зарядов в вакууме определяется законом Кулона.

F12 = k

k = = 9*109 Нм2/Кл2

e0 = 8,85*10-12 Кл2/(Нм2) – электрическая постоянная


Система статических зарядов не может быть устойчивой.


Взаимодействие между зарядами передается электромагнитным полем, источником которого являются заряды.

Электромагнитное поля распространяется в пространстве со скоростью света.


Электрическое поле в данной точке характеризуется напряженностью поля.


Напряженность поля – векторная физическая величина, равная отношению силу Кулона, действующей на пробный положительный заряд в данной точке, к величине этого заряда

 (Н/Кл)


Напряженность электростатического поля точечного положительного заряда на расстоянии r от него:

E = k


Сила, действующая на точечный положительный заряд, помещенный в электростатическое поле напряженность Е


Линии напряженности электростатического поля – линии, касательные к которым в каждой точке поля совпадают по направлению с вектором напряженности электростатического поля.


Напряженность электростатического поля пропорциональна степени сгущения силовых линий.


Принцип суперпозиции электростатических полей:

напряженность поля системы зарядов равна геометрической (векторной) сумме напряженностей полей, созданных каждым зарядом в отдельности


Внутри заряженной сферы напряженность электростатического поля равна нулю.

Вне заряженной сферы напряженность электростатического поля совпадает с напряженностью поля точечного заряда, равного заряду сферы и помещенного в ее центр.


Напряженность поля бесконечной заряженной плоскости зависит от поверхностной плотности заряда и не зависит от расстоянии до плоскости

E = (для вакуума)


Электростатическое поле – потенциально


Работа сил электростатического поля по перемещению заряженной частицы из одной точки в другую не зависит от формы траектории.


Точечный заряд +q, находящийся на расстоянии r от неподвижного точечного заряда +Q, обладает потенциальной энергией

W+q =


Потенциал электростатического поля в данной точке – физическая величина, равная отношению потенциальной энергии пробного заряда в этой точке к величине его заряда.

φ =

1 В = 1 Дж/Кл


Потенциал электростатического поля точечного заряда

φ =


Потенциальная энергия заряда в точке с потенциалом φ

Wq = qφ


Эквипотенциальная поверхность – поверхность, во всех точках которой потенциал одинаков


Линии напряженности электростатического поля перпендикулярны эквипотенциальным поверхностям и направлены от большего потенциала к меньшему.


Работа силы электростатического поля равна произведению величины перемещаемого заряда на разность потенциалов в начальной и конечной точках

Aq = qU


Разность потенциалов в однородном поле между двумя точками, находящимися на расстоянии d друг от друга, вдоль линии напряженности Е

U = Ed


Проводник – вещество, в котором свободные заряды могут перемещаться по всему объему


Диэлектрик – вещество, содержащее только связанные заряды, которые не могут независимо друг от друга перемещаться под действием электрического поля.


Полупроводник – вещество, в котором количество свободных зарядов зависит от внешних условий (температуры, электрического поля)


Относительная диэлектрическая проницаемость среды e – число, показывающее во сколько раз напряженность электростатического поля в однородном диэлектрике меньше соответствующей напряженности в вакууме.


Электроемкость уединенного проводника – физическая величина, равная отношению заряда проводника к его потенциалу

C =

Единица измерения – Ф (фарада)

1 Ф = 1 Кл/В


Электроемкость конденсатора – физическая величина, равная отношению заряда одного из проводников к разности потенциалов между этим проводником и соседним

C =


Электроемкость плоского конденсатора с диэлектриком

C =

S – площадь пластин

d – расстояние между пластинами

e - относительная диэлектрическая проницаемость диэлектрика


Энергия, запасенная в электростатическом поле конденсатора

W =  =


Объемная плотность энергии пропорциональна квадрату напряженности поля.

w =

ЭЛЕКТРИЗАЦИЯ ТЕЛ(уч.10кл.стр.350-352)

Определение и примеры

Физическая модель процесса электризации

Способы электризации тел и примеры их использования



Непосредственное действие электромагнитных сил между телами не обнаруживается, так как тела в обычном состоянии электрически нейтральны. Нейтрален атом любого вещества, число электронов в нем равно числу протонов в ядре. Положительно и отрицательно заряженные частицы связаны друг с другом электрическими силами и образуют нейтральные системы.


Макроскопическое тело заряжено электрически в том случае, если оно содержит избыточное количество элементарных частиц с каким-либо одним знаком. Так, отрицательный заряд обусловлен избытком электронов по сравнению с числом протонов, а положительный – недостатком электронов.


Электризация – процесс получения электрически заряженных макроскопических тел из электронейтральных


Первые наблюдения притяжения и отталкивания тел в результате трения отмечены в Греции в VI в.д.н.э. После полировки янтарь притягивал кусочки бумаги, волосы.

Взаимодействие тел в результате трения было названо электрическим (от греч. electron – янтарь)


Степень электризации тел характеризуется значением и знаком электрического заряда, полученного телом.

Каучук, натертый о мех, оказывается отрицательно заряженным.

Стекло, натертое о шелк, - положительно заряженным.

При этом мех заряжается положительно, а шел – отрицательно.


 Причина электризации – в различии энергии связи электрона с атомом у разных веществ. При взаимном трении одни вещества отдают электроны, а другие их присоединяют.


Заряды взаимодействующих при электризации веществ равны по модулю.

(см. закон сохранения заряда)

С помощью опыта можно доказать, что при электризации трением ода тела приобретают заряды, противоположные по знаку, но одинаковые по модулю.


Заряды приобретаемые при электризации всегда кратны заряду электрона «е» и являются дискретными.


Существует три способа электризации тел:

1. Электризация через трение - трибоэлектризация.

2. Электризация наведением (явление электростатической индукции).

3. Электризация с помощью электритирования. РАСШИФРОВАТЬ ПОНЯТИЕ


Электрические заряды сохраняются на заряженных телах различное время в зависимости от способа электризации: трением или наведением – короткое время; электритированием - - годы и десятки лет.


При трении стекла об асбест, стекло заряжается отрицательно, а асбест – положительно.

Это означает, что одно и тоже вещество при трении с различными веществами может получать заряд разного знака.


Электризация вещества может происходить не только в результате трения, но и в результате соприкосновения с заряженным телом, нагревании, световом облучении и т.д.


Электризация при облучении используется, например, в ксероксе.


При электризации тел выполняется закон сохранения электрического заряда:

В замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной

q1 + ... + qn = const

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД(уч.10кл.стр.347-349,356)

Определение электродинамики и электростатики

Электромагнитное взаимодействие

Определение электрического заряда

Единица измерения.

Эталон заряда(уч.10кл.стр.356 см. закон Кулона)

Виды электрических зарядов

Элементарный электрический заряд (элементарные частицы)

Квантование заряда

Закон сохранения заряда (см.ниже)



Если частицы взаимодействуют друг с другом с силами, которые убывают с увеличением расстояния так же, как и силы всемирного тяготения, но превышают силы тяготения во много раз, то говорят, что эти частицы имеют электрический заряд. Сами частицы называются заряженными. Бывают частицы без электрического заряда, но не существует заряда без частицы.


Взаимодействия между заряженными частицами носят название электромагнитных. Электрический заряд определяет интенсивность электромагнитных взаимодействий подобно тому, как масса определяет интенсивность гравитационных взаимодействий.

Наличие электрического заряда у частиц означает лишь существование определенных силовых взаимодействий между ними.


Понятие заряда является фундаментальным и не может быть сведено или выражено через другие понятия.


Способность частиц (или тел) к электромагнитному взаимодействию характеризует электрический заряд.


Электрический заряд – физическая величина, определяющая силу электромагнитного взаимодействия.


Создать макроскопический эталон единицы электрического заряда невозможно из-за утечки заряда. Естественно было бы за единицу принять заряд электрона, что и сделано в атомной физике, но этот заряд слишком мал и поэтому пользоваться им в качестве единицы неудобно.


В СИ единица заряда является не основной, а производной и эталон для нее не вводится. Она определяется с помощью Ампера – основной единицы СИ.

Единица электрического заряда – Кл (Кулон) (в честь французского ученого Кулона Шарля Огюстена)

Обозначение - q

Кулон – электрический заряд, проходящий через поперечное сечение проводника при силе тока в 1 А за 1 с


Существует два вида электрических зарядов – положительные и отрицательные.

Выбор названия зарядов был исторической случайностью.


Одноименные заряды отталкиваются, разноименные – притягиваются.


Носителями заряда могут быть элементарные частицы, атомы, молекулы, макроскопические тела.


Экспериментально было установлено, что существует минимальное значение электрического заряда, одинаковое по модулю для положительных и отрицательных зарядов. Отделить часть такого заряда невозможно.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать