Учебник по физике для поступающих в ВУЗ /Экзаменационные вопросы по физике (2006-2007)/

r

Сопротивление

R

Потенциальная энергия

деформированной пружины

Энергия электрического поля

конденсатора

Кинетическая энергия

Энергия магнитного поля

катушки

Импульс

mv

Поток магнитной индукции

Li

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ

ОСНОВНЫЕ ПОЛОЖЕНИЯ ( уч.10кл.стр.345-346)

Волновой процесс – процесс переноса энергии без переноса вещества.


Механическая волна – возмущение, распространяющееся в упругой среде.


Наличие упругой среды – необходимое условие распространения механической волны.


Перенос энергии и импульса в среде происходит в результате взаимодействия между соседними частицами среды.


Волны бывают продольные и поперечные.


Продольная механическая волна – волна, в которой движение частиц среды происходит в направлении распространения волны.


Поперечная механическая волна – волна, в которой движение частиц среды происходит в направлении перпендикулярном распространению волны.


Продольные волны могут распространяться в любой среде.


Поперечные волны в газа и жидкостях не возникают, так как в них отсутствуют фиксированные положения частиц.


Периодическое внешнее воздействие вызывает периодические волны.


Гармоническая волна – волна, порождаемая гармоническими колебаниями частиц среды.


Длина волны – расстояние, на которое распространяется волна за период колебаний ее источника

λ = vT

v – скорость волны


Скорость механической волны – скорость распространения возмущений в среде


Поляризация – упорядоченность направлений колебаний частиц в среде


Плоскость поляризации – плоскость, в которой колеблются частицы среды в волне.


Линейно-поляризованная механическая волна – волна, частицы которой колеблются вдоль определенного направления (линии)


Поляризатор – устройство, выделяющее волну определенной поляризации


Стоячая волна – волна, образующаяся в результате наложения двух гармонических волн, распространяющихся навстречу друг другу и имеющих одинаковый период, амплитуду и поляризацию


Пучности стоячей волны – положение точек, имеющих максимальную амплитуду колебаний.


Узлы стоячей волны – не перемещающиеся точки волны, амплитуда колебаний которых равна нулю.


На длине l струны, закрепленной на концах, укладывается целое число n полуволн поперечных стоячих волн.

= n (n = 1, 2, 3, …)

Такие волны называются модами колебаний


Мода колебаний для произвольного целого n>1 называется n-й гармоникой или n-м обертоном.

Мода колебаний первой гармоники называется основной модой колебаний.


Звуковые волны – упругие волны в среде, вызывающие у человека слуховые ощущения.

Звуковые волны лежат в пределах 16 Гц – 20 кГц


Скорость распространения звуковых волн определяется скоростью передачи взаимодействия между частицами среды.

Скорость звука в твердом теле, как правило, больше скорости звука в жидкости, которая в свою очередь превышает скорость звука в газе.


Звуковые сигналы классифицируют по высоте, тембру и громкости.


Высота звука – определяется частотой источника звуковых колебаний.

Чем больше частота колебаний, тем выше звук.


Тембр звука – определяется формой звуковых колебаний.

Различие формы колебаний, имеющих одинаковый период, связано с разными относительными амплитудами основной моды и обертонов.


Громкость звука – характеризуется уровнем интенсивности звука.


Интенсивность звука – энергия звуковых волн, падающая на площадь 1 м2 за 1 с

Единица измерения интенсивности звука – Вт/м2


Уровень интенсивности звука

β = 10 lg

I – интенсивность звука

I0 – 10-12 Вт/м2 – интенсивность, соответствующая порогу слышимости


Единица уровня интенсивности – дБ (децибел)


Порог слышимости – характеризуется минимальной интенсивностью звука, которая может фиксироваться человеческим ухом.

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ (уч.10кл. стр.69-70, уч.11кл.стр.137)

Виды механических колебаний. Примеры

Определение периодического движения

Определение гармонических колебаний. Примеры

Определение амплитуды

Определение фазы колебаний

Определение начальной фазы колебаний

Определение и формула периода. Единицы измерения

Определение и формула частоты. Единицы измерения

Определение циклической частоты. Ее связь с периодом и частотой

Представление гармонических колебаний в виде векторных диаграмм (уч.11кл.стр.137-139)

Сложение гармонических колебаний.

Энергия при гармонических колебаниях. ДОПОЛНИТЬ

 

 

Колебаниями называются процессы, характеризуемые определённой повторяемостью со временем.

Гармоническими называют колебания, при которых какая-либо физическая величина, описывающая процесс, из­меняется со временем по закону косинуса или синуса:

x(t) = A cos(ωt + α)

В частности колебания, возникающие в системе с одной возвращающей силой, пропорциональной деформации, являются гармоническими.


Выясним физический смысл постоянных A, w, a, входящих в это уравнение гармонических колебаний.


Константа А называется амплитудой колебания.

Амплитуда – это наибольшее значение, которое может принимать колеблющаяся величи­на.

Согласно определению, амплитуда она всегда положительна.


Выражение wt+a, стоящее под знаком косинуса, называют фазой колебания.

Она позволяет рассчитать значение колеблющейся величины в любой момент времени.


Постоянная величина a представляет собой значение фазы в момент вре­мени t =0 и называется начальной фазой колебания.

Значение начальной фазы определяется выбором начала отсчёта времени.


Минимальный интервал, через который происходит повторение движения тела, называется периодом колебаний Т.

Единица измерения – с (секунда)


Физическая величина, обратная периоду колебаний и характеризующая количество колебаний в единицу времени, называется частотой:

ν =

Единица измерения - Гц (Герц) = с-1. (В честь ученого Генриха Герца)


Величина w получила название циклической частоты, физический смысл которой связан с понятиями периода и частоты колебаний.


Cвязь между частотой и циклической частотой колебания.

Значения колеблющейся величины в моменты времени t1 и t2 = t1+T, где Т — период колебания, согласно определению периода равны между собой:

x(t1) = A cos(ωt1 + α)

x(t2) = A cos(ωt2 + α) = A cos(ω(t1+Т) + α)

x(t1) = x(t2) = A cos(ωt1 + α) = A cos(ωt1 + α + ωТ)

Это возможно, ес­ли ωТ = 2π, поскольку косинус - периодическая функция с периодом 2p радиан. Получаем:

ω =  = 2πυ


Из этого соотношения следует физический смысл циклической частоты - она показывает, сколько колебаний совершается за 2p секунд.


Метод векторных диаграмм

Для наглядного описания гармонических колебаний используется метод векторных диаграмм.

Гармонические колебания представляются в виде вектора. Модуль этого вектора равен амплитуде колебаний, а угол, образуемый вектором с осью Х, равен начальной фазе колебаний. Возможность такого представления следует из связи гармонических колебаний с вращением по окружности.

При вращении вектора его проекция на ось Х меняется по косинусоидальному закону:

A cos (ωt + φ).

Любое синусоидальное колебание можно рассматривать как косинусоидальное с определенной начальной фазой:

A sin (ωt + φ) = A cos (ωt + φ – π/2)


При наличии двух гармонических колебаний их разностью фаз Δφ = φ2 – φ1 на векторной диаграмме является угол между ними. В этом случае говорят, что одно колебание опережает или отстает от другого.


Сложение колебаний на векторной диаграмме производится по правилам сложения векторов, т.е. по правилу параллелограмма и треугольника.


Сумма гармонических колебаний также будет гармоническим колебанием.

АМПЛИТУДА, ПЕРИОД И ЧАСТОТА КОЛЕБАНИЙ (уч.10кл. стр.69-70)

Периодическое движение и его виды(см.выше уч.10кл.)

Определения и единицы измерения амплитуды, периода и частоты.

СВОБОДНЫЕ КОЛЕБАНИЯ (уч.10кл. стр.167-170)

Определение вынужденных колебаний

Определение свободных (собственных) колебаний

Необходимые условия возникновения свободных колебаний (уч.10кл.стр.167 на полях)

Определение точки поворота при колебаниях

Определение, формулы и единицы измерения периода и амплитуды колебаний


Гармонические колебания (См.выше)


Механическими колебаниями называют движения тел, повторяющиеся точно или приблизительно одинаково через одинаковые промежутки времени.

Общим признаков всех видов колебаний является повторяемость процесса движения через определенный интервал времени.

Силы, действующие между телами внутри рассматриваемой системы тел, называют внутренними силами.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать