Учебник по физике для поступающих в ВУЗ /Экзаменационные вопросы по физике (2006-2007)/

Эти колебания могут возникать как в колебательных системах, т.е. системах, имеющих положение устойчивого равновесия, так и в системах, не обладающих эти свойством.


Колебания тела под действием внешней периодической силы Fx = F0 cos(ωt), изменяющейся по гармоническому закону:

ax =  =  cos(ωt) = a0 cos(ωt)

где = a0 – амплитуда ускорения тела


Отклонение тела от положения равновесия x = A cos(ωt)

Амплитуда вынужденных колебаний A =  =

тело колеблется между точками 0 и 2A=

Период вынужденных колебаний T =


Рассмотрим характер вынужденных колебаний в системе, в которой возможны собственные колебания с частотой ω0 в отсутствии внешнего воздействия.

По второму закону Ньютона max = -kx + F0cos(ωt)

При колебательном движении x = A cos(ωt) и ax = -an cos(ωt) = -ω2r cos(ωt),

где r =A (амплитуда)


Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы ω:

A = ││



Если ω < ω0, амплитуда вынужденных колебаний увеличивается с ростом частоты вынуждающей силы.

При ω >> ω0 амплитуда вынужденных колебаний убывает с ростом частоты по закону квадратной гиперболы.

При ω = ω0 – резонанс.


Резонанс – явление резкого возрастания частоты вынужденных колебаний при совпадении частоты внешней силы с частотой собственных колебаний системы.


Резонансная кривая – график зависимости амплитуды вынужденных колебаний системы от частоты внешней силы.


При резонансе внешняя сила действует синхронно со свободными колебаниями системы.


Работа, совершаемая внешней силой при резонансе положительна, поэтому полная механическая энергия системы постоянно возрастает:

E = E0 + Fx∆x


В реальных системах трение не дает амплитуде увеличиться до бесконечности.

Потери энергии на трение приводят к уменьшению полной механической энергии колебаний и соответственно к уменьшению их амплитуды. (кривая 2 на графике)


При свободных колебаниях система получает избыточную энергию однократно: при выведении ее из положения равновесия.

При вынужденных колебаниях источник внешнего периодического воздействия сообщает дополнительную энергию непрерывно.


Избежать резонанса можно и изменяя частоту собственных колебаний системы (например, кусочек пластилина прилепленный к дребезжащему стеклу)


Явление резонанса позволяет с помощью сравнительно малой силы получить значительное увеличение амплитуды колебаний.

РЕЗОНАНС (уч.10кл. 177-183)

Вынужденные колебания. Основные определение и понятия (см.выше уч.10кл.)

Определение и физика затухающих колебаний. Колебания в системе устойчивого равновесия

Колебательная система

Амплитуда вынужденных колебаний на примере пружинного маятника. Формула

Зависимость амплитуды от частоты вынуждающей силы. Формула

График зависимости амплитуды от частоты вынуждающей силы при разных ее соотношениях с собственной частотой колебаний системы

Определение и физический и математический смысл резонанса.

Резонансная кривая. Точка резонанса на графике

Энергия и амплитуда колебаний при резонансе

Примеры резонанса

Примеры резонанса в электроцепях (ДОПОЛНИТЬ ИЗ ДРУГОГО ИСТОЧНИКА)


См.выше «Вынужденные колебания» (уч.10кл. стр.167, 173-179)


Явление резонанса широко используется в технике. Оно может быть как полезным, так и вредным. Так, например, явление электрического ре­зонанса играет полезную роль при настройке радиоприемника на нужную радиостанцию изменяя величины индуктивности и ёмкости, можно до­биться того, что собственная частота колебательного контура совпадёт с частотой электромагнитных волн, излучаемых какой-либо радиостанцией.


ПОНЯТИЕ ОБ АВТОКОЛЕБАНИЯХ

Вынужденные колебания это незатухающие колебания. Неизбежные потери энергии на трение компенсируются подводом энергии от внешнего источника периодически действующей силы.


Существуют системы, в которых незатухающие колебания возникают не за счет периодического внешнего воздействия, а в результате имеющейся у таких систем способности самой регулировать поступление энергии от постоянного источника.

Такие системы называются автоколебательными, а процесс незатухающих колебаний в таких системах автоколебаниями.


В автоколебательной системе можно выделить три характерных элемента:

- колебательная система

- источник энергии

- устройство обратной связи между колебательной системой и источником.


В качестве колебательной системы может быть использована любая система, способная совершать собственные затухающие колебания (например, маятник настенных часов).

Источником энергии может служить энергия деформация пружины или потенциальная энергия груза в поле тяжести.

Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника.



Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом. Ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей. На верхнем конце маятника закреплен анкер (якорек) с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника. В ручных часах гиря заменяется пружиной, а маятник балансиром маховичком, скрепленным со спиральной пружиной.

Балансир совершает крутильные колебания вокруг своей оси. Колебательной системой в часах является маятник или балансир.

Источником энергии поднятая вверх гиря или заведенная пружина.

Устройством, с помощью которого осуществляется обратная связь, является анкер, позволяющий ходовому колесу повернуться на один зубец за один полупериод.

Обратная связь осуществляется взаимодействием анкера с ходовым колесом.

При каждом колебании маятника зубец ходового колеса толкает анкерную вилку в направлении движения маятника, передавая ему некоторую порцию энергии, которая компенсирует потери энергии на трение.

Таким образом, потенциальная энергия гири (или закрученной пружины) постепенно, отдельными порциями передается маятнику.


Механические автоколебательные системы широко распространены в окружающей нас жизни и в технике. Автоколебания совершают паровые машины, двигатели внутреннего сгорания, электрические звонки, струны смычковых музыкальных инструментов, воздушные столбы в трубах духовых инструментов, голосовые связки при разговоре или пении и т.д.


Авто колебания в электромагнитном колебательном контуре

Для поддержания незатухающих электромагнитных колебаний в контуре необходимо пополнять запасы энергии в нём. Это можно сделать, периодически подключая конденсатор контура к источнику постоянного тока.

Трудность заключается в том, что электрические колебания в контурах обычно происходят с большой частотой, и с такой же частотой конденсатор нужно подключать к источнику постоянного тока и отключать его, согласуя моменты подключений конденсатора к источнику с моментами появления на его обкладках зарядов, совпадающих по знаку со знаками полюсов подключаемого источника тока.

В качестве быстродействующего ключа может использоваться транзистор ( Пока на базу транзистора не подается сигнал, ток через него не проходит, конденсатор отключен от источника…При подаче на базу управляющего сигнала через транзистор протекает ток, и конденсатор заряжается от источника).


Для согласования моментов подключения колебательного контура к источнику постоянного тока с соответствующими моментами изменения напряжения на конденсаторе используется принцип обратной связи.

Катушка обратной связи подключена так, что при возрастании силы тока в цепи коллектора на базе оказывается потенциал, отпирающий транзистор, а при уменьшении коллекторного тока – потенциал, запирающий.

Это - положительная обратная связь.


Рассмотренный генератор незатухающих электромагнитных колебаний является примером автоколебательной системы.

МЕХАНИЧЕСКИЕ ВОЛНЫ(уч.10кл.стр.323-324)

Физическая модель волнового процесса

Способы передачи энергии и импульса между двумя точками пространства

Определение волнового процесса

Определение возмущения

Определение механической волны

Условия распространения механической волны

Определение скорости механической волны


Существует два фундаментальных способа передачи энергии и импульса между двумя точками пространства:

- непосредственное перемещение частиц из одной точки в другую

- перенос энергии без переноса вещества в результате последовательной передачи энергии и импульса по цепочке между соседними взаимодействующими друг с другом частицами среды. (Волновой процесс)


Волновой процесс – процесс переноса энергии без переноса вещества.


В результате внешнего воздействия на среду в ней возникает

возмущение – отклонение частиц среды от положения равновесия.


Механическая волна – возмущение, распространяющееся в упругой среде.


Наличие упругой среды – необходимое условие распространения механической волны.


Скорость механической волны – скорость распространения возмущения в среде.

Длина волны – расстояние, на которое распространяется волна за период колебаний ее источника

λ = vT

v – скорость распространения волны

Т – период волны


При возникновении волн их частота определяется частотой колебаний источника, а скорость – средой, где они распространяются, поэтому волны одной частоты могут иметь в разных средах различную длину.

СКОРОСТЬ РАСПРОСТРАНЕНИЯ ВОЛНЫ

См. Механические волны (уч.10кл.стр.323-324)


Скорость механической волны – скорость распространения возмущения в среде.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать