Учебник по физике для поступающих в ВУЗ /Экзаменационные вопросы по физике (2006-2007)/

 

Электровакуумный диод

Простейшим прибором, использующим термоэлектронную эмиссию, является электровакуумный диод.


Внутри баллона из стекла или металлокерамики, из которого откачан воздух, размещены два электрода: анод и катод.


Анод представляет собой круглый или овальный цилиндр, имеющий общую ось с катодом.


Катод имеет вид вертикального металлического цилиндра, покрываемого обычно слоем оксидов щелочноземельных металлов с низкой работой выхода электронов – бария, стронция, кальция. Такой катод называется оксидным.

При нагревании поверхность такого катода выделяет гораздо больше электронов, чем катода из чистого металла.


Внутри катода расположен изолированный проводник – нить накала, нагреваемый внешним переменным током.


Нагретый катод испускает электроны, достигающие анода, если он имеет более высокий потенциал, чем катод.


Вокруг катода при его нагревании создается электронное облако.


Если подключить катод к положительному выводу батареи, а анод – к отрицательному, то поле внутри диода будет смещать электроны к катоду, и тока не будет. Если же подключить наоборот – анод к плюсу, а катод к минусу – то электрическое поле будет перемещать электроны по направлению к аноду.

Этим объясняется свойство односторонней проводимости диода.


Основная причина нелинейности вольт-амперной характеристики вакуумного диода в том, что свободные электроны, образующие ток, испускаются одним из электродов в ограниченном количестве. Кроме того, на движение электронов наряду с полем существенное влияние оказывает поле пространственного заряда электронного облака у катода.


Чем выше напряжение между анодом и катодом, тем меньше пространственный заряд электронного облака и тем большее количество электронов достигает анода, тем больше сила тока в цепи.


Если катод не покрыт оксидным слоем, то при достаточно большом напряжении все электроны, покинувшие катод, достигают анода и при дальнейшем увеличении напряжения сила тока уже не меняется. Ток достигает насыщения.


Если повысить температуру катода, то катод будет покидать большее количество электронов. Электронное облако вокруг катода станет более плотным. Ток насыщения будет достигнут при большем напряжении между анодом и катодом, а сила тока насыщения возрастает.


В электронной лампе с оксидным катодом достигнуть тока насыщения нельзя. Это требует столь высокого напряжения, при котором катод разрушается.


Электровакуумный триод

Потоком движущихся от катода к аноду электронов можно управлять с помощью электромагнитного поля. Для этого диод модифицируется, и между анодом и катодом добавляется сетка.

Получившийся прибор называется триодом.


Если на сетку подать отрицательный потенциал, то поле между сеткой и катодом будет препятствовать движению электрона. Если подать положительный – то поле будет препятствовать движению электронов.


Электронно-лучевая трубка

 


Представляет собой длинную стеклянную колбу, в которой создан высокий вакуум (10-6-10-7 мм рт. ст.). Внутри баллона имеется система электродов, позволяющая получать очень тонки и очень длинный пучок электронов. Эту совокупность электродов называют электронной пушкой (прожектором)


Катод- источник быстрых электронов представляет собой узкий цилиндр, внутри которого находится нагреватель. Снаружи катод покрыт специальным оксидным веществом с малой работой выхода электронов. Электроны испускаются с торца разогретого цилиндра.


Управляющий электрод предназначен для регулировки интенсивности электронного пучка. Он имеет цилиндрическую форму и окружает катод. Через отверстие в основании этого цилиндра пролетают электроны, испускаемые катодом. На управляющий электрод попадает небольшой отрицательный потенциал. Изменяя потенциал управляющего электрода можно изменять яркость пятна на экране.


Напротив катода расположены Аноды в форме пустотелого цилиндра, к которому электронный пучок попадает, пройдя через фокусирующий цилиндр, содержащий диафрагму с узким отверстием.

Форма, расположение и потенциалы анодов выбраны так, чтобы наряду с ускорением электронов осуществлялась и фокусировка электронного пучка, т.е. уменьшение площади его поперечного сечения на экране почти до точки.


Между катодом и анодом поддерживается напряжение несколько киловольт,

необходимое для разгона пучка электронов.


Ускоренные электрическим полем электроны вылетают из отверстия диафрагмы и летят к экрану, изготовленного из вещества, светящегося под действием ударов электронов.


Для управления электронным лучом служат две пары управляющих металлических пластин, одна из которых расположена вертикально, а другая горизонтально.

Если левая из пластин имеет отрицательный потенциал, а правая – положительный, то луч отклонится вправо, а если полярность пластин изменить, то луч отклонится влево.

Если же на эти пластины подать переменное напряжение, то луч будет совершать колебания в горизонтальной плоскости.

Аналогично будет колебаться луч в вертикальной плоскости, если переменное напряжение на вертикально отклоняющие пластины.

СОПРОТИВЛЕНИЕ ПРОВОДНИКОВ

Для каждого проводника существует определенная зависимость силы тока от приложенной разности потенциалов на концах проводника. Эту зависимость выражает так называемая вольт-амперная характеристика проводника.

Ее находят, измеряя силу тока в проводнике при различных значениях напряжения.

Основная электрическая характеристика проводника — сопротивление. От этой величины зависит сила тока в проводнике при заданном напряжении.


Сопротивление проводника представляет собой меру противодействия проводника установлению в нем электрического тока.


Наличие сопротивления объясняется хаотическим тепловым движением молекул проводника, препятствующих направленному движению носителей заряда, образующему электрический ток в проводнике.


Пусть к проводнику длиной l и поперечным сечением S приложено напряжение U.

Под действием электрического поля напряженностью E = U/l электроны, являющиеся носителями электрического тока, приобретают постоянное ускорение в направлении противоположном напряженности поля:

a = =  =


Из-за столкновений с атомами и молекулами электроны под действием электрического поля движутся по сложной не прямолинейной траектории. За промежуток времени τе между столкновениями электрон, движущийся равноускоренно, приобретает направленную скорость:

v = a τе =  τе

Сила тока через поперечное сечение проводника (учитывая, что q0 = e):

I = q0nSv = enSv = enS  τе = U


Сила тока в однородном проводнике прямо пропорциональна приложенному напряжению.


Коэффициент пропорциональности между силой тока и напряжением обозначают:

g =  и называют проводимостью

Единица измерения – См (Сименс) или Мо(обратный Ом)


Электрическое сопротивление проводника:

R = =

Единица измерения – Ом = В/А


Наиболее простой вид имеет вольт-амперная характеристика металлических проводников и растворов электролитов. Впервые для металлов ее установил немецкий ученый Георг Ом. (См.ниже «Закон Ома для участка цепи»)


С помощью закона Ома можно определить сопротивление проводника по силе тока при известном напряжении:

R =

Проводник имеет сопротивление 1 Ом, если при напряжении в 1 В сила тока в нем 1 А.

Сопротивление зависит от материала проводника и его геометрических размеров.

Сопротивление проводника длиной l с постоянной площадью поперечного сечения S:

R = ρ

где ρ =  — удельное сопротивление проводника - величина, зависящая от рода вещества и его состояния (от тем­пературы в первую очередь)

Единица измерения – Ом*м


Удельное сопротивление – скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения (при направлении тока перпендикулярно его сечению)


Удельное сопротивление численно равно сопротивлению проводника, имеющего форму куба с ребром 1 м, если ток направлен вдоль нормали к двум противоположным граням куба.

При нагревании удельное сопротивление металлов увеличивается по линейному закону:

ρ = ρ0 (1+ α DT)

ρ0 – удельное сопротивление при T0 = 293оК, DT = T - T0;

a – температурный коэффициент сопротивления, особый для каждого металла

Единица измерения – 1/К = К-1


Коэффициент a называют температурным коэффициентом сопротивления.

Он характеризует зависимость сопротивления вещества от температуры.


Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при его нагревании на 1К.


Для всех металлов a > 0 и незначительно меняется с изменением температуры.

Если интервал изменения температуры не велик, то температурный коэффициент сопротивления можно считать постоянным и равным его среднему значению на этом интервале температур.


Удельное сопротивление полупроводников , в отличие от металлов, уменьшается при увеличении температуры, так как растет количество свободных зарядов, создающих электрический ток.

Такой процесс электропроводности характерен для собственной проводимости полупроводников.


У растворов электролитов сопротивление с ростом температуры не увеличивается, а уменьшается. Для них a < 0.


При нагревании проводника его геометрические размеры меняются незначительно. Сопротивление меняется в основном за счет изменения его удельного сопротивления.

Увеличение удельного сопротивления при нагревании объясняется увеличением кинетической энергии хаотического теплового движения электронов, препятствующей их направленному движению, создающему электрический ток.


При близких к абсолютному нулю температурах сопротивление веществ резко падает до нуля, так как практически прекращается тепловое движение молекул, препятствующее току.

Это явление называется сверхпроводимостью.

Прохождение тока в сверхпроводящих материалах происходит без потерь на нагревание проводника.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать