Учебник по физике для поступающих в ВУЗ /Экзаменационные вопросы по физике (2006-2007)/

Из формулы видно, что:

Разность потенциалов между полюсами источника тока (напряжение), приложенная к подключенному к полюсам проводнику, меньше ЭДС.

Напряжение на участке, содержащем источник тока, равно сумме ЭДС источника и разности потенциалов на этом участке.


Если внешняя цепь разомкнута и ток через источник не протекает, то работа силы сопротивления равна нулю:

ε = U


ЭДС равна напряжению между полюсами разомкнутого источника тока.


Простейшая электрическая цепь состоит из источника тока (сопротивлением r), потребителя или нагрузки (сопротивлением R) и соединительных проводов.

Закон Ома для замкнутой цепи связывает силу тока в цепи, ЭДС и полное сопротивление цепи R+r.

Закон Ома для полной цепи:

Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению:

I =

Электро­движущая сила гальванического эле­мента есть работа сторонних

сил при перемещении единичного положи­тельного заряда внутри элемента от одного полюса к другому.


Сопротивление источника часто на­зывают внутренним сопротивлением r в отличие от внешнего сопротивле­ния R цепи.


В генераторе внутреннее сопротивление r это сопротивление обмоток, а в гальва­ническом элементе — сопротивление раствора электролита и электродов.

По мере разряда батарейки или аккумулятора их внутреннее сопротивление возрастает.


Произведение силы тока и сопро­тивления участка цепи часто назы­вают падением напряжения на этом участке.

Таким образом, ЭДС равна сумме падений напряжений на внут­реннем и внешнем участках замкну­той цепи.


Сила тока зависит от трех вели­чин: ЭДС, сопротивлений внешнего R и внутреннего r участков цепи.


Внутреннее сопротивление ис­точника тока не оказывает заметного влияния на силу тока, если оно мало по сравнению с сопротивлением внешней части цепи (R>>r). При этом напряжение на зажимах источ­ника приблизительно равно ЭДС: U = IR ≈ ε.


При коротком замыкании, когда R→0, сила тока в цепи определяет­ся именно внутренним сопротивле­нием источника и при электродви­жущей силе в несколько вольт мо­жет оказаться очень большой, если r мало (например, у аккумулятора r 0,1-0,001 Ом). Провода могут расплавиться, а сам источник выйти из строя.


Если цепь содержит несколько последовательно соединенных эле­ментов с ЭДС, то

полная ЭДС цепи равна алгебраи­ческой сумме ЭДС отдельных элементов.


Если при обходе цепи переходят от отрицательного полюса источника к положительному, то ЭДС >0.

Закон Ома для цепи с несколькими источниками тока:

Сила тока в замкнутой цепи с последовательно соединенными источниками тока прямо пропорциональна алгебраической сумме их ЭДС и обратно пропорциональна полному сопротивлению цепи.

I =


Обобщенный закон Ома для неоднородной цепи:

(Неоднородная цепь – цепь, содержащая источник тока)

I =

(φ1- φ2) ± ε = U

где R – сопротивление нагрузки, r- внутреннее сопротивление источника.

ЭДС берется со знаком «+» если ток направлен от «+» к «-» источника тока

ЭДС берется со знаком «-» если ток направлен от «-» к «+» источника тока


Такой вид закона Ома применим к разным случаям.

Например при замкнутой цепи φ1= φ2 и закон принимает вид: I =

РАБОТА И МОЩНОСТЬ ТОКА. КПД ИСТОЧНИКА ТОКА

Работу сил электрического поля, создающего электрический ток, называют работой тока.


Согласно закону сохранения энергии эта работа должна быть равна изменению энергии рассматриваемого участка цепи. Поэтому энергия, выделяемая на данном участке цепи за время ∆t, равна работе тока.


Работа тока на участке с сопротивлением R за время Dt равна:

A = ∆qU = IU∆t = I2R∆t


Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа.


Мощность тока равна отношению работы тока за время ∆t к этому интервалу времени:

P = = UI = I2R =

Работа выражается, как обычно, в джоулях, мощность – в ваттах.


Если на участке цепи под действием электрического поля не совершается работа и не происходят химические реакции, то работа приводит к нагреванию проводника.

При этом работа равна количеству теплоты, выделяемому проводником с током:

Q = I2R ∆t (Закон Джоуля-Ленца).


Нагревание проводника под действием тока происходит следующим образом. Электрическое поле ускоряет электроны. При столкновении с ионами кристаллической решетки они передают им часть своей энергии. В результате энергия беспорядочного движения ионов около положений равновесия возрастает. Это означает увеличение внутренней энергии и температуры тела.


В электрической цепи работа совершается не только на внешнем участке, но и в батарее. Электрическое сопротивление источника тока называется внутренним сопротивлением r. На внутреннем участке цепи выделяется количество теплоты, равное (по закону Джоуля-Ленца):

 Q = I2r ∆t


Полная работа сил электростатического поля при движении по замкнутому контуру равна нулю, поэтому вся работа оказывается совершенной за счет внешних сил, поддерживающих постоянное напряжение.


Отношение работы внешних сил к переносимому заряду называется электродвижущей силой источника:

ε =

Dq – переносимый заряд.


Если в результате прохождения постоянного тока произошло только нагревание проводников, то по закону сохранения энергии (и учитывая что I = Dq/Dt) :

A = Aст = Qполн ÞDqε = I2(R + r) Dt Þ ε = I(R + r) Þ I =

Cила тока в электрической цепи прямо пропорциональна ЭДС и обратно пропорциональна полному сопротивлению цепи.


Полная мощность источника тока :

P =  = Iε = I2(R + r) = I2R + I2r = Pполезн + Pпотерь

КПД источника тока:

η = = =


Любой электрический прибор (лампа, электродвигатель) рассчитан на потребление определенной энергии в единицу вре­мени.


ДОБАВИТЬ МОЩНОСТЬ ПЕРЕМЕННОГО ТОКА

ЗАКОН ДЖОУЛЯ-ЛЕНЦА

Количество теплоты определяется по закону Джоуля – Ленца:


Если электроток протекает в цепи, где не происходят химические реакции и не совершается механическая работа, то энергия электрического поля превращается во внутреннюю энергию проводника и его температура возрастает.

Путем теплообмена эта энергия передается окружающим, более холодным телам.


Нагревание проводника под действием тока происходит следующим образом. Электрическое поле ускоряет электроны. При столкновении с ионами кристаллической решетки они передают им часть своей энергии. В результате энергия беспорядочного движения ионов около положений равновесия возрастает. Это означает увеличение внутренней энергии и температуры тела.



Закон, определяющий количество теплоты, которое выделяет проводник с током в окружающую среду, был впервые установлен экспериментально английским ученым Д.Джоулем и русским ученым Эмилем Христофоровичем Ленцом:


Закон Джоуля-Ленца:

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику

Q = I2R ∆t


Из закона сохранения энергии следует, что количество теплоты равно работе электрического тока.


Важной характеристикой любого электроприбора является энергия, потребляемая в единицу времени, или мощность тока.


Мощность электрического тока – работа, совершаемая в единицу времени электрическим полем при упорядоченном движении заряженных частиц в проводнике.

Средняя мощность тока, учитывая, что по закону Джоуля-Ленца Q = I2R ∆t:

P =  = = I2R = = IU

При последовательном соединении проводников (I = const) мощность, выделяемая в проводниках, пропорциональна их сопротивлению.

При параллельном соединении проводников (U = const) мощность, выделяемая в проводниках, обратно пропорциональна их сопротивлению.


ДОБАВИТЬ ЗАКОН ДЖОУЛЯ-ЛЕНЦА ДЛЯ ПЕРЕМЕННОГО ТОКА

ПОЛУПРОВОДНИКИ

ОСНОВНЫЕ ПОЛОЖЕНИЯ

Электронная проводимость – результат направленного перемещения в межатомном пространстве свободных электронов, покинувших валентную оболочку атома в результате внешнего воздействия на полупроводник (нагревание, воздействие внешних полей и т.д.)


Дырочная проводимость – результат направленного перемещения валентных электронов между электронными оболочками соседних атомов на вакантные места – дырки.


Примеси в полупроводнике – атомы посторонних химических элементов, содержащихся в основном полупроводнике.

Различают донорные и акцепторные примеси.

Атомы донорной примеси имеют валентность большую валентности основного полупроводника.

Атомы акцепторной примеси имеют валентность меньшую валентности основного полупроводника.


Полупроводник n-типа – полупроводник с донорной примесью

Полупроводник p-типа – полупроводник с акцепторной примесью


p-n-переход – контактный слой двух примесных полупроводников p и n типов.


Запирающий слой – двойной слой разноименных электрических зарядов, создающий электрическое поле на p-n-переходе, препятствующее свободному разделению зарядов.


Полупроводниковый диод – полупроводниковый прибор с одним p-n-переходом и двумя выводами для включения в электрическую цепь.


Транзистор – полупроводниковый прибор с двумя p-n-переходами и тремя выводами для включения в электрическую цепь.

Транзистор используется для усиления и генерации электрических сигналов.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать