Источник ультрафиолетового излучения – валентные электроны атомов и молекул, а также ускоренно движущиеся свободные заряды.
В малых дозах УФ-излучение активизирует синтез в организме человека витамина D и вызывает загар.
Большие дозы могут вызвать ожоги и раковые заболевания, ослабляет иммунную систему, способствует развитию некоторых заболеваний.
УФ-излучение с λ < 300 нм деполимеризует нуклеиновые кислоты и разрушает протеины, нарушая жизненные процессы в организме. В малых дозах оно обладает бактерицидным действием.
Озоновый слой Земли сильно поглощает УФ-излучение с λ < 320 нм, а кислород воздуха – коротковолновое УФ-излучение с λ < 185 нм.
Оконное стекло, содержащее оксид железа, практически полностью поглощает УФ-излучение
Человек не видит УФ-излучение, так как роговая оболочка глаза и глазная линза поглощают его.
Рентгеновское излучение – 3*1016-3*1020, λ = 10-12-10-8 м
Открыто в 1895 г. немецким физиком В.Рентгеном. Изучая ускоренное движение заряженных частиц в закрытой черным картоном трубке, Рентген обнаружил свечение экрана, покрытого солью бария, находящегося на некотором расстоянии от трубки.
Излучение высокой проникающей способности, испускаемое частицами в трубке, проходящее в отличие от ИК и УФ-излучения через картон, Рентген назвал X-лучами.
Источником рентгеновского излучения является изменение состояния электронов внутриатомных оболочек атомов и молекул, а также ускоренное движущиеся свободные электроны.
Благодаря высокой проникающей способности рентгеновское излучение широко примеряется в диагностической технике.
Большая доза рентгеновского облучения приводит к ожогам и изменению структуры крови человека.
СКОРОСТЬ РАСПРОСТРАНЕНИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН
См.выше «Электромагнитные волны»
ДОПОЛНИТЬ ИЗ ДРУГОГО ИСТОЧНИКА
ОПЫТЫ ПО ОПРЕДЕЛЕНИЮ СКОРОСТИ
В бегущей гармонической электромагнитной волне напряженность электрического поля и индукция магнитного поля изменяются по гармоническому закону:
E = E0 sin (wt) B = B0 sin (wt)
Рассмотрим, как распространяется в пространстве вдоль оси Х напряженность электрического поля. Будем считать, что скорость распространения возмущения равна v.
Начальное возмущение (t = 0 , E = 0) через время τ распространяется со скоростью v на расстояние v τ.
Расстояние в пространстве между точками волны, колеблющимися в одинаковой фазе, оказывается равным vT и характеризует длину электромагнитной волны.
Длина волны – расстояние, на которое распространяется волна за период колебаний ее источника.
При постоянной скорости распространения волны за период она проходит расстояние:
λ = vT =
В произвольной точке с координатой х напряженность электрического поля в момент t та же, что и в точке х0 в более ранний момент времени (t – x/v) Время x/v для распространения волны между этими точками.
Уравнение бегущей гармонической волны напряженности электрического поля, распространяющейся в положительном направлении оси Х со скоростью v (учитывая, что E = E0 sin (wt), B = B0 sin (wt)):
E = E0 sin [ w(t - ) ]
Индукция магнитного поля в электромагнитной волне изменяется во времени и пространстве синхронно с напряженностью электрического поля.
Уравнение бегущей гармонической волны индукции магнитного поля поля, распространяющейся в положительном направлении оси Х со скоростью v:
B = B0 sin [ w(t - ) ]
В общем случае скорость электромагнитной волны в произвольной среде вычисляется по формуле:
v = УТОЧНИТЬ ФОРМУЛУ
СВОЙСТВА ЭЛЕКТРОМАГНИТНЫЙ ВОЛН
См.выше «Электромагнитные волны»
Поляризация волны
Фронт волны
В поляризованной электромагнитной волне колебания вектора напряженности электрического поля упорядочены.
Плоскополяризованная (или линейно-поляризованная) электромагнитная волна – волна, в которой вектор , и следовательно, колеблются только в одном направлении, перпендикулярном направлению распространения волны.
Плоскость поляризации электромагнитной волны – плоскость, проходящая через направление колебаний вектора напряженности электрического поля и направление распространения волны.
Напряженность электрического поля и индукция магнитного принимают определенные значения в момент времени t в точках с координатой х, для которых фаза φ синуса в выражениях E = E0 sin [ w(t - ) ] и B = B0 sin [ w(t - ) ] постоянна:
φ = w(t - ) = const
Геометрическим местом точек, имеющих определенную координату х, является плоскость, проходящая через эту точку параллельно плоскости YZ.
В этой плоскости, называемой фронтом волны, напряженность электрического поля и индукция магнитного поля принимают определенное значение, т.е. имеют одинаковую фазу.
Фронт электромагнитной волны – поверхность постоянной фазы напряженности электрического поля и индукции магнитного поля.
Если фронтом волны является плоскость, то волна – плоская.
Направление распространения фронта волны характеризует луч.
Луч – линия, вектор касательной к которой, перпендикулярен фронту волны и направлен в сторону переноса энергии волны в данной точке.
На большом расстоянии от источника излучения фронт произвольной электромагнитной волны становится плоским.
ЭНЕРГИЯ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ
Перенос энергии электромагнитной волной
Поток энергии
Плотность потока энергии
Интенсивность волны
Зависимость энергии электромагнитной волны от расстояния до источника и его интенсивности
Электромагнитные волны переносят энергию электромагнитного поля.
Скорость переноса энергии через площадь S в момент времени t характеризует поток энергии электромагнитной волны.
Поток энергии электромагнитной волны – энергия электромагнитного излучения, проходящего в единицу времени сквозь поверхность площадью S:
ΦW = Pэм =
Плотность потока энергии электромагнитной волны – мощность электромагнитного излучения, проходящего сквозь единицу площади поверхности, расположенной перпендикулярно направлению распространения волны:
= =
Объем параллелепипеда DV = ScDt.
Энергия электромагнитного поля внутри него равна произведению плотности энергии на объем:
DW = wэм DV = wэм ScDt
Тогда плотность потока излучения (учитывая, что wэм = ε0E2):
= wэм c = ε0E2c
Учитывая, что напряженность электрического поля в электромагнитной волне зависит от времени (например, по гармоническому закону) перенос мощности характеризует величина, усредненная по времени – интенсивность волны.
Интенсивность электромагнитной волны – среднее значение плотности потока энергии электромагнитной волны:
I = = wэм c = cε0
Единица измерения – Вт/м2
Для гармонических электромагнитных колебаний с амплитудой E0, так же как и для действующего значения переменного тока: =
I = cε0 = cε0E02
Интенсивность гармонической электромагнитной волны пропорциональна квадрату амплитуды напряженности электрического поля.
Найдем зависимость интенсивности излучения точечного источника от расстояния до него. Будем считать, что такой источник излучает электромагнитные волны по всем направлениям с одинаковой интенсивностью. В вакууме мощность волны не поглощается.
С течением времени волна проходит через все большие концентрические сферические поверхности.
Средняя энергия, переносимая в перпендикулярном направлении сквозь единицу площади в единицу времени (интенсивность волны) уменьшается по мере удаления от источника.
Средняя мощность электромагнитного излучения со сферической поверхности источника радиусом rи:
Pи = Iи 4π rи2
где Iи – интенсивность излучения с поверхности источника площадью S0 = 4π rи2
В результате распространения излучения источника в пространстве сквозь сферическую поверхность радиуса r проходит та же средняя мощность электромагнитной волны:
Pэм = I 4π rи2
где I – интенсивность излучения источника на расстоянии r от него
Поскольку мощности равны:
I = Iи или I ~
Интенсивность излучения точечного источник убывает обратно пропорционально квадрату расстояния до источника.
I = cε0 = cε0E02 ; I ~ Þ E0 ~
В отличие от напряженности электрического поля точечного заряда, резко убывающей с расстоянием по закону обратных квадратов, напряженность электрического поля в электромагнитной волне, созданной точечным зарядом, убывает с расстоянием более медленно (обратно пропорционально) Благодаря этому электромагнитные волны передаются в вакууме на большие расстояния, обеспечивая возможность радиосвязи.
Выясним, как интенсивность гармонической электромагнитной волны зависит от частоты.
Излучение электромагнитной волны возникает при ускоренном движении электрических зарядов. Средняя энергия излучаемой электромагнитной волны (и соответственно ее интенсивность) прямо пропорциональна среднему квадрату ускорения излучающей заряженной частицы:
I ~
Гармоническая электромагнитная волна частотой υ возникает при гармонических колебаниях заряженной частицы с этой частотой. Координата заряженной частицы по сои Y при таких колебаниях изменяется по гармоническому закону:
y = A cos( 2πυt )
По гармоническому закону изменяется и ускорение частицы:
a = y’’(производная второго порядка) = - A(2πυ)2 cos( 2πυt )
Соответственно: ~ υ4
I ~ ~ υ4
Интенсивность гармонической электромагнитной волны прямо пропорциональна четвертой степени ее частоты.
Резкая зависимость интенсивности излучения от частоты означает, что для получения интенсивных электромагнитных волн частота электромагнитных колебаний источника должна быть достаточно высокой.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98