Пусть задан график S = S(t), требуется построить u = u(t) и a = a(t). Для точки А кривой (рис. 4.1) можно записать:
S = у ×mS ,
t = x ×mt
Тогда:
,
где a - угол наклона касательной к рассматриваемой точке А (предполагаем, что касательная параллельна хорде дуги окружности около рассматриваемой точки).
Рис. 4.1
Методика графического дифференцирования (рис. 4.2):
Диаграмма скоростей. Её строят графическим дифференцированием диаграммы перемещений по методу хорд:
· разделяют ось абсцисс диаграммы перемещений на произвольное число одинаковых частей;
· через точки деления 1, 2, 3… проводят координатную сетку;
· точки пересечения ординат с графиком перемещений соединяют отрезками (хордами) 0¢-1¢, 0¢-2¢, 0¢-3¢, ¼ (чем больше точек деления, тем хорды будут ближе к истинной кривой);
· строят систему координат u = ¦(t), справа от начала координат откладываем отрезок 0рu., называемый полюсным расстоянием, длиной Н1 и отмечают полюс диаграммы скоростей рu;
Примечание: Величина Н1 выбирается в зависимости от желаемого размаха диаграммы u = ¦(t).
· из полюса рu проводят лучи, параллельные соответствующим хордам на диаграмме перемещений до пересечения с осью ординат, получают точки 1¢¢, 2¢, ¼
· из полученных точек проводят горизонтальные лучи до пересечения с вертикальными прямыми, опущенными из середин соответствующих отрезков на диаграмме перемещений. Полученные точки 1², 2²,¼ соединяют плавной кривой и получают диаграмму изменения скорости (первое приближение), в масштабе
,
где mS - масштаб диаграммы перемещений, м/мм; mj - масштаб угла поворота начального звена, рад/мм; w1- угловая скорость начального звена, рад/с; mt - масштаб времени, с/мм; Н1- полюсное расстояние, взятое с чертежа, мм.
· Проделав аналогичные операции с диаграммой u = ¦(t), предварительно восстановив точки 1, 2, 3, и т.д., получаем зависимость ускорения а = ¦(t) в масштабе
,
где Н2 - полюсное расстояние для диаграммы а = ¦(t), мм.
Рис. 4.2
Экспериментальный метод кинематического исследования
При экспериментальном исследовании кинематики механизмов кинематические характеристики звеньев и точек механизма определяются и регистрируются с помощью чувствительных элементов - датчиков, которые используя различные физические эффекты преобразуют кинематические параметры в пропорциональные электрические сигналы. Эти сигналы регистрируются измерительными самопишущими приборами (самописцами, осциллографами и др.).
В последнее время для регистрации и обработки экспериментальных данных все более широко используются специальные или универсальные компьютеры. Для примера рассмотрим экспериментальную установку для исследования кинематических характеристик синусного механизма (рис. 4.3):
Датчик перемещения
1 2
B, C R
SD = f(t)
A D
Датчик Датчик
0 скорости N S ускорения
3 Тензометрический
uD= f(t) усилитель
Рис. 4.3 aD = f(t)
В этой экспериментальной установке:
· для измерения перемещения выходного звена используется потенциометрический датчик перемещения, в котором пропорционально положению движка потенциометра изменяется его сопротивление;
· для измерения скорости выходного звена используется индукционный датчик скорости, в котором напряжение на концах катушки движущейся в поле постоянного магнита пропорционально скорости катушки;
· для измерения ускорения выходного звена используется тензометрическиий акселерометр. Он состоит из пластинчатой пружины, один конец которой закреплен на выходном звене механизма, а на втором закреплена масса. На пластину наклеены проволочные тензопреобразователи. При движении выходного звена с ускорением инерционность массы вызывает изгиб пластины, деформацию тензопреобразователей и изменение их сопротивления пропорциональное ускорению выходного звена.
Проектирование типовых плоских и пространственных механизмов
Задачи проектирования
При проектировании механизмов различают три этапа:
1. первым этапом является установление кинематической схемы механизма, которая обеспечила бы требуемый вид и закон движения;
2. второй этап – разработка конструктивных форм механизма, обеспечивающих прочность, долговечность, высокий к.п.д. и т.д.;
3. третий этап – разработка технологических и технико-экономических показателей проектируемого механизма, определяемых эксплуатацией в производстве, ремонтами и т.д.
Теория механизмов и машин занимается первым этапом. Раздел ТММ, посвященный методам проектирования по заданным кинематическим условиям схем механизмов, получил название – синтеза механизмов.
Основные задачи синтеза механизмов:
- преобразование вращательного движения вокруг одной оси во вращательное движение вокруг другой оси;
- преобразование вращательного движения вокруг одной оси в поступательное движение вдоль некоторой заданной прямой и наоборот;
- преобразование поступательного движения вдоль одной заданной прямой в поступательное движение вдоль другой заданной прямой;
- воспроизведение одной из точек звеньев рычажного механизма требуемой траектории, воспроизведение заданных углов поворота выходного звена, движение выходного звена с остановами.
Механизмы передачи
Предназначены для передачи вращательного движения между звеньями.
Передача вращательного движения может производиться с изменением угловой скорости вращения, с сохранением или изменением направления вращения. Параметр, характеризующий при передаче движения изменение скорости и направления, называют передаточным отношением:
, или ,
где знак (+) если вращение звеньев в одном направлении; знак (-) если вращение звеньев в противоположных направлениях; n1, w1 - соответственно частота, об/мин. и скорость вращения, рад/с, вала 1; n2, w2 - соответственно частота, об/мин. и скорость вращения, рад/с, вала 2.
Примечание: Знак передаточного отношения имеет смысл при передачи движения между звеньями с параллельными осями.
Механизмы передачи (механические передачи) классифицируются в зависимости от названия основных звеньев: фрикционные, ременные, цепные, зубчатые, червячные, волновые.
Все передачи характеризуются количеством ступеней. Одноступенчатая – это передача образованная двумя подвижными звеньями, образуемыми низшие пары со стойкой и высшую пару между собой (рис. 4.4).
Рис. 4.4
Многоступенчатая – несколько ступеней соединенных последовательно (рис. 4.5).
Общее передаточное отношение любого типа сложного зубчатого механизма i1n, включающего несколько последовательно соединенных друг с другом простых (одноступенчатых) механизмов, равно произведению передаточных отношений отдельных простых механизмов (ступеней), входящих в его состав, т.е.:
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39