,
а потенциальная
.
То есть в системе с виброизолятором только часть работы внешней силы расходуется на изменение кинетической энергии. Часть этой работы переходит в потенциальную энергию упругого элемента, и часть рассеивается демпфером (переходит в тепло и рассеивается в окружающей среде).
Уравнения движения:
,
.
Решение этой системы уравнений подробно рассматривается в курсе теории колебаний, поэтому ограничимся только анализом амплитудно-частотной характеристики (рис. 15.6). Характеристику построим в относительных координатах Dxотн = x/xст , где xст - статическая деформация упругого элемента.
k2 > k1 k1 Dxотн k2 Область эффективности виброизолятора
1
0 w w, рад/с Рис. 15.6 |
Динамическое гашение колебаний
Динамические гасители или антивибраторы широко применяются в машинах работающих в установившихся режимах для отстройки от резонансных частот (например, в судовых двигателях внутреннего сгорания). Динамические гасители могут быть выполнены в виде упругого или физического маятника. Рассмотрим простейший линейный упругий динамический гаситель (рис. 15.7). Принцип действия динамического гасителя заключается в создании гасителем силы направленной противоположно возмущающей силе. Настройка динамического гасителя заключается в подборе его собственной частоты: собственная частота гасителя должна быть равна частоте тех колебаний, амплитуду которых необходимо уменьшить («погасить»):
,
где - собственная частота гасителя, mг - масса гасителя, сг - жесткость пружины гасителя.
Уравнения движения системы с динамическим гасителем, схема которого изображена на рис. 15.7 имеют вид:
0 с Р2 = R20× sin wt 1
x1 m1 cг kг
г mг
xг Рис. 15. 7 |
,
,
где Dx = x - xг - деформация пружины гасителя.
На рис. 15.8 приведены амплитудно-частотные характеристики этой системы без динамического гасителя и с динамическим гасителем. Как видно из этих характеристик, при установке динамического гасителя амплитуда на частоте настройки резко снижается, однако в системе вместо одной собственной частоты возникает две. Поэтому динамические гасители эффективны только в узком диапазоне частот вблизи частоты настройки гасителя. Изображенные на рисунке кривые 1 и 2 относятся к динамическому гасителю без демпфирования. При наличии в системе демпферов форма кривой изменяется (кривая 3): амплитуды в зонах гашения увеличиваются, а зонах резонанса - уменьшаются.
2 Dxотн 1
Области эффективности динамического 3 гасителя
1
0 w01 w0 w02 w, рад/с Рис. 15.8 |
Контрольные вопросы
40. Статическое и динамическое уравновешивание при проектировании деталей.
41. В чем различие между виброгашением и виброизоляцией.
42. Сущность подрессоривания, или виброизоляции.
43. Динамическое гашение колебаний.
Лекция 16
Трение в кинематических парах. Трение скольжения: сила трения, угол и конус трения, движение на горизонтальной плоскости, трение на наклонной плоскости, трение клинчатого ползуна, трение во вращательных парах, трение в пятах.
Трение в кинематических парах
Явление трения имеет место всегда, когда любые тела – твёрдые, жидкие или газообразные, находящиеся в соприкосновении одно с другим, движутся относительно друг друга, или подвергаются воздействию сил, стремящихся вызвать их относительное движение.
Трение в машинах играет весьма существенную роль. В передаточных механизмах – фрикционных, ременных и др. за счет силы трения осуществляется передача движения от ведущего звена к ведомому. В других случаях трение нежелательно, так как оно препятствует движению и на преодоление сил трения затрачивается значительная часть работы движущих сил – так называется работа сил вредных сопротивлений.
Трение вызывает износ трущихся частей машины, что существенно препятствует повышению скоростей движения, а следовательно и производительности машин.
В дальнейшем мы будем иметь в виду трение только на поверхностях соприкасающихся твёрдых тел. Способность контактирующих поверхностей звеньев сопротивляться их относительному движению называется внешним трением.
Трение обусловлено неидеальным состоянием контактирующих поверхностей (микронеровности, загрязнения, окисные пленки и т.п.) и силами межмолекулярного сцепления.
Опыт показывает, что при относительном движении двух соприкасающихся твёрдых тел, прижатых одно к другому некоторой силой, на поверхности соприкосновения действует сила, сопротивляющаяся относительному движению – сила трения.
Различают следующие виды трения:
· трение покоя проявляется в момент, когда два тела находящиеся в состоянии относительного покоя начинают относительное движение (касательную составляющую, возникающую в зоне контакта до возникновения относительного движения, в условиях когда она меньше силы трения покоя, будем называть силой сцепления; максимальная величина силы сцепления равна силе трения покоя);
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39