В тех случаях, когда заданное передаточное отношение превышает целесообразное для одной пары колес или когда требуется обеспечить большое межосевое расстояние, используют сложные зубчатые механизмы, состоящие из нескольких параллельно или последовательно соединенных друг с другом зубчатых передач. Различают два вида таких механизмов: сложные зубчатые механизмы с неподвижными осями (многократные зубчатые передачи лекция 5, рис 5.8, а) и планетарные (эпициклические) зубчатые механизмы (оси отдельных колес могут перемещаться относительно стойки, как на рис 5.8, б, в лекции 5). Каждый из этих видов сложных зубчатых механизмов может быть составлен не только из однородных колес (цилиндрических или конических) и передач (с неподвижными осями или планетарных), но и из их сочетания (рис. 6.1). Наибольшее распространение получили сложные зубчатые механизмы, составленные из цилиндрических колес с прямыми зубьями (реже косыми) с равноделенным шагом. Если у зубчатых механизмов оси ведущего и ведомого звеньев располагаются по одной прямой (рис 5.8, б, в), то они называются соосными.
Рис. 6.1
Общее передаточное отношение любого типа сложного зубчатого механизма i1n, включающего несколько последовательно соединенных друг с другом простых механизмов (не планетарных ступеней, планетарных или их комбинаций) из n колес, равно произведению передаточных отношений отдельных простых механизмов (ступеней), входящих в его состав, т.е.:
,
Так, для механизма, представленного на рис. 6.1, состоящего из ступени цилиндрической передачи с колесами 1-2 с неподвижными осями, конической передачи 3-4, планетарной ступени 5-6-7, конической передачи с неподвижными осями 7-8, общее передаточное отношение равно:
так как w2 = w3; w4 = w5.
Степень подвижности механизмов с неподвижными осями колес равна единице, благодаря чему соотношение между угловыми скоростями ведущего и ведомого звеньев остается постоянным. Поэтому в задачу исследования этих механизмов входит определение передаточного отношения по заданной схеме и размерам колес. При этом колеса на схемах сложных зубчатых механизмов изображаются полоидными или совпадающими с ними начальными окружностями. Планетарные механизмы могут иметь две и более степени свободы. В этом случае соотношения между угловыми скоростями выходных валов будут неоднозначными. Определение угловых скоростей колес таких механизмов при различных режимах работы является основной задачей их исследования.
Проектирование любых зубчатых механизмов обязательно состоит из двух этапов: выбора структурной и кинематической схем механизма и определение чисел зубьев для обеспечения требуемого передаточного отношения.
Кинематическое исследование механизмов
Исследование рядовых зубчатых механизмов
Рядовые зубчатые механизмы (передачи с промежуточными или паразитными колесами), представляют собой последовательное соединение нескольких пар зубчатых колес, на каждой из неподвижных осей которых помещено по одному колесу (рис. 6.2). Имея схему передачи и зная числа зубьев или радиусы полоидных окружностей колес, можно определить общее передаточное отношение редуктора аналитически или графически.
Для механизма, состоящего из четырех последовательно соединенных цилиндрических колес внешнего зацепления (рис. 6.2), общее передаточное отношение:
где i12 - передаточное отношение первой пары сцепляющихся зубчатых колес внешнего зацепления:
Рис. 6.2
Знак минус поставлен потому, что колеса 1 и 2 вращаются в противоположных направлениях. Для второй пары:
Для третьей пары:
,
Тогда искомое передаточное отношение:
В общем случае при n колесах в механизме:
Общее передаточное отношение рядового зубчатого механизма равно обратному отношению чисел зубьев или радиусов крайних колес. Знак передаточного отношения определяется множителем (-1)n, где n - число передач внешнего зацепления. При n четном i > 0, т.е. ведомое и ведущее звенья редуктора или мультипликатора вращаются в одном направлении; при нечетном n - в разных направлениях.
Анализируя приведенные примеры устанавливаем, что число зубьев промежуточных колес 2 и 3, находящихся одновременно в зацеплении с двумя другими колесами, не влияет на величину общего передаточного отношения механизма. Но установка таких промежуточных колес позволяет изменять направление вращения ведомого звена. При четном числе промежуточных колес направление вращения ведущего и ведомого звеньев противоположны, при нечетном - одинаковы. Применяют эти колеса главным образом там, где необходимо изменить направление вращения ведомого вала при неизменном направлении вращения ведущего (механизм трензеля токарного станка, механизм заднего хода автомобильной коробки передач и др.), либо там, где необходимо обеспечить передачу движения при больших межосевых расстояниях (когда нельзя увеличивать размеры ведущих и ведомых колес из-за их больших габаритов).
Исследование зубчатых механизмов с промежуточными валами
Сложные зубчатые механизмы с промежуточными валами представляют собой последовательное соединение нескольких пар колес, на каждый из валов которого помещено более одного колеса (кроме валов ведущего и ведомого колес). На рис. 6.3 представлен такой трёхступенчатый механизм для преобразования движения между параллельными валами, который состоит из двух ступеней внешнего зацепления с цилиндрическими колесами (1-2 и 3-4) и одной ступени внутреннего о зацепления (колеса 5-6). Колеса 2-3 и 4-5 соединены вместе, образуя звенья.
Рис. 6.3
Передаточное отношение первой ступени равно:
,
второй:
третьей:
Перемножая эти значения передаточных отношений, получаем
Учитывая, что , w2 = w3; w4 = w5, после сокращения получаем
Общее передаточное отношение ступенчатой передачи равно произведению передаточных отношений ступеней, входящих в состав механизма, или равно отношению произведения чисел зубьев (полоидных радиусов) ведомых колес к произведению чисел зубьев (радиусов) ведущих колее, взятых со своими знаками. Так как передаточное отношение этого механизма (в отличие от рядового) зависит от числа зубьев всех входящих в его состав колес, то путем соответствующего подбора чисел зубьев колес можно получить большие передаточные отношения.
В общем случае при n колесах q внешних зацеплений, общее передаточное отношение равно:
В случае соосного механизма, составленного из нулевых колес (рис. 6.4) должно удовлетворяться условие соосности (равенство межосевых расстояний):
,
или
,
где m12 и m34 - соответственно модули зацеплений первой и второй ступеней.
Рис. 6.4
Планетарные механизмы
Сложные зубчатые механизмы, в которых ось хотя бы одного колеса подвижна, называются планетарными механизмами. К типовым планетарным механизмам относятся:
· однорядный планетарный механизм;
· двухрядный планетарный механизм с одним внешним и одним внутренним зацеплением;
· двухрядный планетарный механизм с двумя внешними зацеплениями;
· двухрядный планетарный механизм с двумя внутренними зацеплениями.
Элементы планетарного механизма имеют специальные названия:
· зубчатые колеса оси которых неподвижны называются центральными. Колесо с внешними зубьями, расположенное в центре механизма называется солнечным, колесо с внутренними зубьями называют короной или эпициклом;
· колеса, оси которых подвижны, называют планетными или сателлитами;
· подвижное звено, соединяющее оси центральных колес и сателлитов называют водилом. Водило принято обозначать не цифрой, а латинской буквой h, или русской в.
В таблице 6.1 приведены структурные схемы типовых планетарных механизмов, а также диапазоны рекомендуемых передаточных отношений и ориентировочные значения КПД при этих передаточных отношениях.
Таблица 6.1 Типовые схемы планетарных механизмов
№
Структурная схема механизма
u
h
1.
2 3
1 в
w1 wв
3…10
0,97…0,99
2
2 3
1 в
w1 wв
7…16
0,96…0,98
3
2 3
1 в
w1 wв
25…300
0,9…0,3
4
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39