Теория машин и механизмов

Синтез зубчатых зацеплений


Зубчатым зацеплением называется высшая кинематическая пара образуемая последовательно взаимодействующими поверхностями зубьев.

Синтез зубчатого зацепления состоит в том, чтобы отыскать такие взаимодействующие поверхности, которые обеспечивали заданный закон их относительного движения.

Синтез основан на использовании основной теоремы зацепления:

.

Следствия теоремы: для получения постоянного передаточного отношения необходимо чтобы отношение радиусов начальных окружностей было постоянно, т.е. точка Р – полюс зацепления не менял своего положения.

При выборе кривых очерчивающих профиль зуба руководствуются соображениями кинематического, динамического, технологического и эксплуатационного характера:

-        кинематические – состоят в том, чтобы проектируемые профили очерчивались простыми геометрическими приёмами, и удовлетворялось требуемое передаточное отношение;

-        динамические – чтобы при постоянной передаваемой мощности, усилие действующее на зубья и опоры было постоянным по величине и направлению и чтобы форма зуба обеспечивала наибольшую прочность;

-        технологические и эксплуатационные – простота изготовления, бесшумная и безударная работа, допустимость некоторых погрешностей в изготовлении и монтаже.

В современном машиностроении наибольшее распространение получили колеса с эвольвентным и круговым (зацепление Новикова) профилями зубьев. В точном машиностроении и приборостроении разновидности циклоидального зацепления.


Эвольвента окружности и её свойства


Эвольвентой называется кривая, очерчиваемая точкой прямой, при перекатывании этой прямой по окружности без проскальзывания (рис. 7.3). В теории зацепления прямую называют производящей (образующей), а окружность – основной окружностью (радиус rb).

Рассмотрим построение эвольвенты Е (рис. 7.3). В произвольной точке эвольвенты М проведем нормаль, которая касается основной окружности в точке В, получаем радиус кривизны эвольвенты r.

Рис. 7.3

Из прямоугольного треугольника DОВМ найдем катет МВ:

.

Из условия образования эвольвенты радиус кривизны МВ должен быть равен длине развертываемой дуги АВ основной окружности:

ÈАВ = rb×(q+a),

,

где q - полярный угол наклона радиус вектора; - угол между направлением радиус вектора и направлением радиуса основной окружности проведенного в точке касания нормали.

Отсюда:

         .

         Разность тангенса и угла представляет собой эвольвентную функцию называемую инволютой. Инволюта является параметром для геометрических расчетов зубчатых механизмов.

Свойства эвольвенты:

-        эвольвента не имеет точек внутри основной окружности;

-        нормаль к любой точке эвольвенты направлена по касательной к основной окружности;

-        центр кривизны эвольвенты лежит в точке касания нормали с основной окружностью.


Эвольвентное зацепление и его свойства


Из свойств эвольвенты вытекают свойства эвольвентного зацепления. Пусть профиль зуба колеса 1 (рис. 7.4) очерчен по эольвенте основной окружности с радиусом rb1, а профиль зуба колеса 2 – по эвольвенте основной окружности радиуса rb2. Поместим центры этих окружностей в центры вращения О1 и О2. Нормаль к эвольвенте первого колеса должна быть касательной к основной окружности первого колеса, а нормаль к эвольвенте второго колеса должна быть касательной к основной окружности второго колеса. В точке касания эвольвент нормаль должна быть общей к обоим профилям, и, следовательно, точка контакта лежит на общей касательной к основным окружностям. При вращении ведущего колеса 1 против часовой стрелки, а ведомого колеса 2 – по часовой (рис. 7.4, а) точка касания эвольвент перемещается по отрезку В1В2 этой касательной, т.к. вне отрезка В1В2 эвольвенты не могут касаться, т.е. иметь общую нормаль; В1В2 является линией зацепления.

Точка пересечения общей нормали к эвольвентам с линией межосевого расстояния О1О2 является полюсом зацепления Р и занимает неизменное положение.

Если направление вращение ведущего колеса 1 и ведомого колеса 2 изменится, то линия зацепления В1В2, по которой перемещается точка контакта,  займет новой положение (рис. 7.4, б).

Угол между линией зацепления В1В2 и прямой, перпендикулярной линии межосевого расстояния, называется углом зацепления и обозначается через aw. Углы РВ1О1 и РВ2О2 равны углу зацепления aw как углы с соответственно перпендикулярными сторонами.  Поскольку РО1 = rw1, а РО2 = rw2, то

.

Следовательно, при эвольвентном зацеплении передаточное отношение может быть выражено через отношение радиусов основных окружностей:

,

причем знак плюс относится к внутреннему зацеплению, а знак минус – к внешнему.

Из формулы видно, что при эвольвентном зацеплении изменение межосевого расстояния не влияет на значение передаточного отношения вследствие неизменности радиусов основных окружностей. При изменении межосевого расстояния изменяются лишь радиусы начальных окружностей и угол зацепления.

w1

 

w1

 


Контрольные вопросы

1.                Сформулируйте основные задачи синтеза планетарных механизмов?

2.                В чем заключаются условия соосности, соседства и сборки при синтезе планерных механизмов?

3.                Сформулируйте основные требования предъявляемые к геометрическим кривым очерчивающим профили зубьев?

4.                Назовите свойства эвольвенты?

5.                Что такое инволюта (эвольвентная функция) угла?

6.                Назовите основные свойства эвольвентного зацепления?


Лекция 8

 

Изготовление зубчатых колес. Смещение режущего инструмента. Коэффициент перекрытия. Явление подрезания. Коррегирование эвольвентного зацепления. Качественные характеристики зубчатой передачи.


Методы изготовления эвольвентных зубчатых колес

 

Существует множество вариантов изготовления зубчатых колес. В их основу положены два принципиально отличных метода:

·     метод копирования, при котором рабочие кромки инструмента по форме соответствуют обрабатываемой поверхности (конгруэнтны ей, т.е. заполняют эту поверхность как отливка заполняет форму). Строится копия, по этой копии изготавливается фреза.

·     метод обкатки, при котором инструмент и заготовка за счет кинематической цепи станка выполняют два движения - резания и огибания (под огибанием понимается такое относительное движение заготовки и инструмента, которое соответствует станочному зацеплению, т.е. зацеплению инструмента и заготовки с требуемым законом изменения передаточного отношения).

         Из вариантов изготовления по способу копирования можно отметить:

·     нарезание зубчатого колеса профилированной дисковой или пальцевой фрезой (проекция режущих кромок которой соответствует конфигурации впадин, рис. 8.1). При этом методе резание производится в следующем прядке: прорезается впадина первого зуба, затем заготовка с помощью делительного устройства (делительной головки) поворачивается на угловой шаг и прорезается следующая впадина. Операции повторяются пока не будут прорезаны все впадины. Недостатки метода: производительность низкая, сложность изготовления инструмента, по мере износа инструмента ухудшение точности и качества поверхности нарезаемого колеса, для изготовления колес с различными модулями необходим набор фрез.

Рис. 8.1

·     отливка зубчатого колеса в форму. При этом внутренняя поверхность литейной формы конгруэнтна наружной поверхности зубчатого колеса. Производительность и точность метода высокая, однако при этом нельзя получить высокой прочности и твердости зубьев.

Из вариантов изготовления по методу обкатки наибольшее распространение получили:

·          обработка на зубофрезерных или зубодолбежных станках червячными фрезами (рис. 8.2, а), долбяками (рис. 8.2, б), инструментальной рейкой – гребёнкой (рис. 8.2, в). Производительность достаточно высокая, точность изготовления и чистота поверхностей средняя. Можно обрабатывать колеса из материалов с невысокой твердостью поверхности. Долбяк позволяет нарезать колеса с внутренним зацеплением.

Рис. 8.2

·     накатка зубьев с помощью специального профилированного инструмента. Обеспечивает высокую производительность и хорошую чистоту поверхности. Применяется для пластичных материалов, обычно на этапах черновой обработки. Недостаток метода образование наклепанного поверхностного слоя, который после окончания обработки изменяет свои размеры.

·     обработка на зубошлифовальных станках дисковыми кругами. Применяется как окончательная операция после зубонарезания (или накатки зубьев) и термической обработки. Обеспечивает высокую точность и чистоту поверхности. Применяется для материалов с высокой поверхностной прочностью.

На рис. 8.3 показан контур зубьев рейки, который называется исходным, так как он служит основой для определения форм и расположения режущих кромок. Отличие размеров инструментов от нарезаемого колеса состоит в том, что их высота увеличена на радиальный зазор (0,25 m). Необходимость зазора обусловлена технологическими требованиями (охлаждение заготовки рабочей жидкостью, сход стружки). Головка зуба режущего инструмента вырезает ножку зуба в заготовке. Этот контур называется производящим, так как при движении режущих кромок он образует производящую поверхность. Прямая СС, проходящая по середине прямолинейной части зуба называется делительной прямой. По делительной прямой толщина зуба равна ширине впадины.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать