Если звено приведения совершает поступательное движение, то его мощность будет представлена следующим выражением:
,
где u1 - скорость звена приведения.
Приведённой силой называется сила (Рпр), приложенная к звену приведения и создающая мощность, равную сумме мощностей всех сил и моментов сил, приложенных к звеньям механизма, т.е.:
.
Приведение масс и моментов инерции звеньев
Для приведения масс и моментов инерции используется понятие о кинетической энергии звеньев. Отметим, как вычисляется кинетическая энергия звеньев при различных видах их движения.
Для звена, совершающего поступательное движение, кинетическая энергия определяется по следующей формуле:
,
где m -масса звена; u - скорость любой точки звена, м/сек.
Если звено совершает вращательное движение, то кинетическая энергия:
,
где J - момент инерции звена относительно оси его вращения, кг×м2; w - угловая скорость звена, рад/сек.
Для звена, совершающего сложное плоское движение, кинетическая энергия состоит из кинетической энергии в поступательном движении вместе с центром тяжести и кинетической энергии во вращательном движении вокруг оси, проходящей через центр тяжести:
,
где us - скорость центра тяжести звена; Js - момент инерции звена относительно оси, проходящей через его центр тяжести.
Обозначим число звеньев механизма, совершающих поступательное, вращательное и сложно-плоское движения, соответственно через р, k и q. Тогда уравнение кинетической энергии примет следующий вид:
.
Кинетическую энергию механизма можно представить как кинетическую энергию вращающегося звена 1 приведения, т. е. .
Отсюда
Следовательно:
.
Таким образом, приведенный момент инерции Jnp представляет собой момент инерции звена приведения, обладающий кинетической энергией, равной сумме кинетических энергий всех движущихся звеньев механизма.
Формула применяется главным образом для плоских шарнирных механизмов. В этом случае Jnp зависит от положения механизма, так как для каждого его положения отношения скоростей будут меняться. Отношение скоростей следует определять из плана скоростей.
Если механизм состоит только из вращающихся звеньев (например, различные виды передач), то уравнение принимает следующий вид:
.
Заменяя отношение угловых скоростей соответствующим передаточным отношением, получим:
.
Так как для передаточных механизмов значения i1k постоянны, то приведенный момент инерции в этом случае также является постоянным.
Отметим, что в ряде случаев, например в следящих устройствах, нужно выбрать двигатель, который обеспечил бы механизму необходимое по условиям эксплуатации время срабатывания. Необходимая пусковая мощность может быть определена по пусковому моменту, который равен произведению приведенного момента инерции на угловое ускорение.
Контрольные вопросы
23. Силовой анализ рычажного механизма методом планов сил.
24. В чем заключается метод Н.Е. Жуковского для определения уравновешивающей силы.
25. Основные режимы и уравнения движения механизма.
26. Уравнение движения механизма в дифференциальном виде.
27. Динамическая модель машинного агрегата.
28. Приведение сил в механизмах.
29.
Приведение
масс в механизмах.
Лекция 13
Установившееся движении механизма. Неравномерность движения. Расчет махового колеса.
Установившееся движение машинного агрегата
Неравномерность движения
Установившимся режимом движения называют режим, у которого обобщенная скорость звена приведения есть периодическая функция во времени (рис. 13.1).
w1, рад/с tпериода
Dw1
w1min w1ср = const w1max
0 t, сек
Рис. 13.1
За время одного периода wi0 = wi, и как следствие DЕ = 0, АG = 0. Тогда из закона изменения кинетической энергии получаем:
.
Если рассматривать установившееся движение внутри периода следует использовать уравнение:
.
В пределах периода текущее значение суммарной работы не равно нулю. Работа может быть то положительной, то отрицательной. При положительной величине работы машина увеличивает свою кинетическую энергию за счет увеличения скорости, то есть разгоняется. На участках, где суммарная работа отрицательна, кинетическая энергия и скорость машины уменьшается, машина притормаживается. В установившемся режиме величины увеличения скорости на участках разгона и снижения на участках торможения за цикл равны, поэтому средняя скорость движения w1ср = const постоянна. В машинах приведенный момент инерции которых зависит от обобщенной координаты, на неравномерность движения оказывает влияние величина изменения приведенного момента инерции. Колебания скорости изменения обобщенной координаты машины не оказывают прямого влияния на фундамент машины. Поэтому эти колебания и вызывающие их причины определяют, так называемую, внутреннюю виброактивность машины.
Величина амплитуды колебаний скорости Dw1 определяется разностью между максимальной w1max и минимальной w1min скоростями. За меру измерения колебаний скорости в установившемся режиме принята относительная величина, называемая коэффициентом неравномерности движения (неравномерности хода):
,
где .
Явление периодической неравномерности в машинах нежелательно с точки зрения прочности и технологии производственного процесса. Чем выше требования к машинам тем должна быть меньше неравномерность.
Для различных машин в зависимости от требований нормального функционирования (снижение чистоты поверхности в металлорежущих станках, нагрев обмоток и снижение КПД в электрогенераторах и т.д.) допускаются различные максимальные значения коэффициента неравномерности движения. Существующая нормативная документация устанавливает следующие допустимые значения коэффициента неравномерности [d]:
· дробилки [d] = 0,2 ... 0,1;
· прессы, ковочные машины [d] = 0,15 ... 0,1;
· насосы [d] = 0,05 ... 0,03;
· металлорежущие станки нормальной точности [d] = 0,05 ... 0,01;
· металлорежущие станки прецизионные [d] = 0,005 ... 0,001;
· двигатели внутреннего сгорания [d] = 0,015 ... 0,005;
· электрогенераторы [d] = 0,01 ... 0,005;
Чтобы снизить внутреннюю виброактивность и неравномерность движения применяются различные методы:
1. уменьшение влияния неравномерности внешних сил (например, применение многоцилиндровых ДВС, насосов и компрессоров с рациональным сдвигом рабочих процессов в цилиндрах);
2. уменьшение влияния переменности приведенного момента инерции (тоже обеспечивается увеличением числа цилиндров в поршневых машинах, а также уменьшением масс и моментов инерции деталей, приведенный момент инерции которых зависит от обобщенной координаты);
3. установка на валах машины центробежных регуляторов или аккумуляторов кинетической энергии - маховиков;
4. активное регулирование скорости с использованием систем автоматического управления, включая и компьютерное управление.
Определение момента инерции махового колеса
Рассмотрим подробно наиболее простой способ регулирования неравномерности вращения - установку дополнительной маховой массы или маховика. Маховик в машине выполняет роль аккумулятора кинетической энергии. При разгоне часть положительной работы внешних сил расходуется на увеличение кинетической энергии маховика и скорость до которой разгоняется система становится меньше, при торможении маховик отдает запасенную энергию обратно в систему и величина снижения скорости машины уменьшается. Сказанное иллюстрируется графиками, изображенными на рис. 13.2. На этом рисунке: Dw1 - изменение угловой скорости до установки маховика, Dw1* - после установки маховика. Отсюда можно сделать вывод: чем больше дополнительная маховая масса, тем меньше изменение Dw1* и коэффициент неравномерности d.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39