Теория машин и механизмов

Второй этап синтеза – метрический. На этом этапе определяются основные размеры звеньев механизма, которые обеспечивают заданный закон преобразования движения в механизме или заданную передаточную функцию. Как отмечалось выше, передаточная функция является чисто геометрической характеристикой механизма, а, следовательно, задача метрического синтеза чисто геометрическая задача, независящая от времени или скоростей. Основные критерии, которыми руководствуется проектировщик, при решении задач метрического синтеза: минимизация габаритов, а, следовательно, и массы; минимизация угла давления в вышей паре; получение технологичной формы профиля кулачка.


Определение минимально-допустимых размеров кулачковых механизмов


Размеры кулачкового механизма определяются минимальным радиусом кулачка. Один и тот же закон движения толкателя может быть воспроизведён кулачком с различными минимальными радиусами. Как правило, желательно получить механизм наименьших размеров, но уменьшение размеров кулачка приводит к увеличению сопротивления в кулачковой паре и в крайнем случае к возможности заклинивания толкателя.

Минимально-допустимые размеры кулачка определяются из условия обеспечения допускаемых углов давления. В качестве примера рассмотрим кулачковый механизм со смещением толкателя (рис. 10.6, а).

Рис. 10.6


В месте контакта толкателя и кулачка точка А, возникает реакция Р12 кулачка на толкатель, направленная по нормали n-n проведённой к профилю кулачка. Разложим полную реакцию на проекции  и , угол между Р12 и линией движения толкателя является углом давления a. Чем больше угол давления, тем больше сопротивление движению, тем меньше к.п.д.

Для нормальной работы кулачкового механизма необходимо, чтобы максимальный угол давления не превосходил угла передачи движения g.

Установим зависимость угла давления от геометрических и кинематических параметров кулачкового механизма, для чего рассмотрим треугольник ВАК:

.

Для окончательного выражения выразим отрезок О1К, для чего построим план скоростей кулачкового механизма (рис. 10.6, б).

,

где  – вектор скорости переносного движения (окружная скорость кулачка) направлен перпендикулярно радиус вектору  по направлению вращения кулачка w1.

.

 – вектор скорости относительного движения (скорость скольжения толкателя по кулачку) направлена по направлению скольжения т.е. параллельно касательной t-t проведенной в точке контакта А к профилю кулачка;

 – вектор абсолютной скорости толкателя направлен по направлению движения толкателя.

Рассмотрим треугольники DО1КА и Dрuа1а2 , устанавливаем, что они подобны, т.к. соответственно имеют две стороны перпендикулярные друг другу и одну параллельную. Составим пропорцию:

,

откуда

.

Установили, что отрезок О1К является аналогом скорости толкателя кулачкового механизма, следовательно:

.

Анализируя полученное выражение устанавливаем, что с уменьшением минимального радиуса кулачка угол давления возрастает, введение смещения толкателя позволяет уменьшить размеры кулачка при одном и том же угле давления.


Выбор закона движения толкателя


Если в задании на проектирование не дан закон движения, то конструктор должен выбрать его из набора типовых законов движения, необходимо, чтобы ускорения толкателя не приводили к большим инерционным нагрузкам, а имеющаяся на предприятии технология позволила бы изготовить профиль с достаточной точностью.

Типовые законы движения делятся на законы с жесткими, мягкими ударами и безударные. С точки зрения динамических нагрузок, желательны безударные законы. Однако кулачки с такими законами движения технологически более сложны, так как требуют более точного и сложного оборудования, поэтому их изготовление существенно дороже. Законы с жесткими ударами имеют весьма ограниченное применение и используются в неответственных механизмах при низких скоростях движения и невысокой долговечности. Кулачки с безударными законами целесообразно применять в механизмах высокими скоростями движения при жестких требованиях к точности и долговечности. Наибольшее распространение получили законы движения с мягкими ударами, с помощью которых можно обеспечить рациональное сочетание стоимости изготовления и эксплуатационных характеристик механизма.

Рассмотрим четыре закона движения толкателя (рис. 10.8):

Рис. 10.8

1. Равномерное движение толкателя (рис. 10.8, а) это наиболее простой закон движения. Кулачок имеет несложный профиль. Однако для быстроходных кулачковых механизмов он не пригоден, так как он связан со скачками скорости в начале и в конце хода толкателя, которые приводят к возникновению ускорений не ограниченных по величине (+¥; - ¥):

.

В начале и в конце хода толкателя, следовательно, силы инерции достигли бы бесконечно большой величины, имеют место «жесткие» удары.

Исходя из указанных соображений, равномерное движение толкателя можно применять лишь для кулачковых механизмов при малых скоростях и малых мощностях.

2. Равноускоренное движение толкателя (рис. 10.8, б) скорость на первой части хода  равномерно возрастает, а затем на втором участке хода равномерно убывает до нуля. На протяжении участков хода ускорение одинаковое. Участки разгона и замедления часто делают неодинаковыми, чтобы уменьшить ускорение и силы инерции на одном из них.

Равноускоренное движение, характеризуемое прямоугольной диаграммой ускорений, не сопровождается ударами, скачков скорости нет, ускорения и, следовательно, силы инерции остаются ограниченными. Однако в быстроходных кулачковых механизмах этот закон движения вызывает повышенную вибрацию и износ. Причиной этого является изменение ускорения толкателя скачком, вызывающее «мгновенное» (за очень короткий промежуток времени) приложение к толкателю больших сил. Это явление называют «мягким» ударом.

3. Сглаженное равноускоренное движение толкателя (рис. 10.8, в). Достоинство – наименьшая величина максимального ускорения толкателя. Диаграмма ускорений имеет форму трапеции, что позволяет избежать скачков ускорения и «мягких» ударов. Такой закон движения может применяться и для быстроходных кулачковых механизмов.

4. Синусоидальный закон движения толкателя (рис. 10.8, г) позволяет получить наибольшую плавность движения, отсутствуют удары. Этот закон движения наиболее предпочтительно применять в быстроходных механизмах. Главным недостатком синусоидального (и трапецеидального) является высокая точность профиля кулачка.


Контрольные вопросы


14.            Классификация и назначение кулачковых механизмов.

15.            Основные параметры кулачковых механизмов.

16.            Как производится кинематический анализ кулачковых механизмов.

17.            Определение минимально-допустимых размеров кулачковых механизмов.

18.            Как выбирается на стадии проектирования закон движения толкателя. Проанализируйте основные виды.


Лекция 11

 

Динамика механизмов и машин. Задачи силового анализа механизмов. Силы и их классификация. Условие кинетостатической определимости кинематических цепей. Графо-аналитический способ силового анализа (метод планов).


Динамика механизмов и машин


Динамика изучает закономерности движения звеньев механизма под действием приложенных сил, при этом рассматривают две задачи:

Прямая задача динамики - определение закона движения системы при заданном силовом воздействии.

Обратная задача динамики - определение требуемого силового воздействия, обеспечивающего заданный закон движения системы.

В общей постановке динамика - изучение каких-либо процессов или явлений в функции времени. Динамическая модель - модель системы, предназначенная  для исследования ее свойств в функции времени (или модель системы, предназначенная для исследования в ней динамических явлений).

Методы составления уравнений (динамической модели системы):

·     энергетический (уравнения энергетического равновесия - закон сохранения энергия);

·     кинетостатический (уравнения силового равновесия с учетом сил инерции по принципу Д’Аламбера).


Классификация сил, действующих в механизмах

 

Все силы, действующие в механизмах, условно делятся на:

·     внешние, действующие на исследуемую систему со стороны внешних систем и совершающие работу над системой. Эти силы в свою очередь подразделяются на:

Þ движущие – это силы которые ускоряют движение звеньев и совершают положительную работу (увеличивает энергию системы);

Þ сопротивления, работа которых отрицательна (уменьшает энергию системы). Силы сопротивления делятся на:

*     силы полезного (производственного) сопротивления - возникающие при выполнении механической системой ее основных функций (выполнение требуемой работы по изменению координат, формы или свойств изделия и т.п., совершают отрицательную работу);

*     силы вредного сопротивления – это силы трения возникающие в месте связи в КП и определяемые условиями физико-механического взаимодействия между звеньями и силы сопротивления среды (работа всегда отрицательна);

Þ взаимодействия с потенциальными полями (позиционные) - возникают при размещении объекта в потенциальном поле, величина зависит от потенциала точки, в которой размещается тело (работа при перемещении из точки с низким потенциалом в точку с более высоким - положительна; за цикл, т.е. при возврате в исходное положение, работа равна нулю). Потенциальное поле - силы тяжести или веса. Существуют электромагнитные, электростатические и другие поля.

·     внутренние, действующие между звеньями механической системы. Работа этих сил не изменяет энергии системы. В механических системах эти силы называются реакциями в кинематических парах.

·     расчетные (теоретические) - силы, которые не существуют в реальности, а только используются в различных расчетах с целью их упрощения:

Þ силы инерции - предложены Д’Аламбером для силового расчета подвижных механических систем. При добавлении этих сил к внешним силам, действующим на систему, устанавливается квазистатическое равновесие системы и ее можно рассчитывать, используя уравнения статики (метод кинетостатики).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать