Силы инерции звеньев рассматриваются как реакции звена на изменение его скорости по величине и направлению. Существование сил инерции обусловлено двумя обстоятельствами: фактом наличия у звеньев массы и фактом движения звеньев, сопровождающегося в общем случае ускорениями отдельных точек и всего звена в целом, так как известно из теоретической механики, что мерой сил инерции является произведение массы на ускорение.
Из курса теоретической механики известно, что систему сил инерции в общем случае можно привести к силе – главному вектору сил инерции приложенного в центре масс s звена (рис. 11.6) и к паре сил, момент которой называется главным моментом сил инерции .
Рис. 11.6
Главный вектор сил инерции определяют по формуле:
.
Главный момент сил инерции определяют по формуле:
,
где m – масса звена, кг; аs – ускорение цента масс, м/с2; Js – момент инерции звена относительно оси проходящей через центр масс перпендикулярной плоскости движения, кг/м2; e - угловое ускорение звена, с-2.
Знак «-» указывает на то, что векторыи соответственно направлены противоположно аs и e.
Силы инерции звеньев совершающих вращательное движение
При равномерном вращательном движении звеньев имеющих цилиндрическую форму (рис. 11.7, а) имеем: и , так как соответственно аs = 0 и e = 0.
При неравномерном вращении звеньев имеющих цилиндрическую форму имеем: так как аs = 0 и , т.к. e ¹ 0.
Рис. 11.7
При равномерном вращении кривошипа (рис. 11.7, б) имеем: так как аs ¹ 0 и , т.к. e = 0.
При неравномерном вращении кривошипа (рис. 11.7, в) имеем: так как аs ¹ 0 и , т.к. e ¹ 0. Для удобства расчетов данную систему принято заменять одной результирующей силой инерции приложенной в центре качания К, расположение которой определяют из выражения:
.
Силы инерции звеньев совершающих поступательное движение
Если звено совершает только поступательное движение (рис. 11.8) то: и , так как e = 0.
Рис. 11.8
Силы инерции звеньев совершающих плоско-параллельное движение
При сложном плоско-параллельном движении звена, например шатуна в кривошипно-ползунном механизме (рис. 11.9), возникают главный вектор сил инерции и главный момент сил инерции .
Для удобства расчетов данную систему принято заменять одной результирующей силой инерции приложенной в центре качания К, имеющей плечо относительно центра масс равное и создающей момент в направлении обратном угловому ускорению шатуна e2.
Рис. 11.9
Условие кинетостатической определимости кинематических цепей
Сила, как векторная величина характеризуется относительно звеньев механизма тремя параметрами: координатами точки приложения, величиной и направлением. Рассмотрим с этих позиций реакции в кинематических парах плоских механизмов.
1. Поступательная кинематическая пара.
В поступательной кинематической паре связи, наложенные на относительное движение звеньев запрещают относительное поступательное движение по оси y и относительное вращение. Заменяя эти связи реакциями, получим реакцию R12 (рис. 11.10).
y (n) R12 x
Pj Pj A 1 2 R12
n Рис. 11.10 |
При силовом расчете поступательной кинематической пары определяют величину реакции R12 и точку её приложения, при этом известно направление - нормаль к контактирующим поверхностям звеньев.
Число связей (ограничений движений) в кинематической паре 2, число разрешаемых движений - 1, число неизвестных при силовом расчете - 2.
2. Вращательная кинематическая пара.
Во вращательной кинематической паре связи, наложенные на относительное движение звеньев запрещают относительные поступательные движения по осям y и x. Заменяя эти связи реакциями, получим реакцию R12 (рис. 11.11).
y x Рi w Рj
1 B 2 R12 Рис. 11.11 |
При силовом расчете вращательной кинематической пары определяется направление и величина реакции R12, при известной точке приложения силы - геометрическому центру кинематической пары B.
Число связей (ограничений движений) в кинематической паре 2, число разрешаемых движений - 1, число неизвестных при силовом расчете 2.
3. Высшая кинематическая пара.
В высшей паре связи, наложенные на относительное движение звеньев, запрещают движение в направлении нормали (nn) к контактирующим поверхностям (ось y). Заменяя эту связь реакцией, получим реакцию R12 (рис. 11.12).
y (n)
Рi w x t Рj
1 С t R12 2 n Рис. 11.12 |
При силовом расчете в высшей кинематической паре определяют величину реакции R12 по известным точке приложения силы (точка контакта рабочих профилей кинематической пары С) и направлению вектора силы - нормаль к профилям.
Число связей (ограничений движений) в кинематической паре 1, число разрешаемых движений - 2, число неизвестных при силовом расчете 1.
Рассмотрим плоский механизм состоящий из n звеньев, соединённых в кинематические пары: 5 класса в количестве р5 и 4 класса в количестве р4. Число уравнений статики которые мы можем составить – 3, общее число уравнений - 3×n. Каждая кинематическая пара 5 класса содержит 2 неизвестные о реакции, 4 класса 1 неизвестное, тогда общее число неизвестных . Тогда условие кинетостатической определимости плоского механизма можно записать как:
.
Т.е. для статически определимых механизмов степень подвижности равна нулю. Для рычажных механизмов , то есть группы Ассура являются статически определимыми.
Силовой расчет типовых механизмов
Постановка задачи силового расчета: для исследуемого механизма при известных кинематических характеристиках и внешних силах определить уравновешивающую силу или момент (управляющее силовое воздействие) и реакции в кинематических парах механизма.
Виды силового расчета:
· статический - для механизмов находящихся в покое или движущихся с малыми скоростями, когда инерционные силы пренебрежимо малы, или в случаях, когда неизвестны массы и моменты инерции звеньев механизма (на этапах, предшествующих эскизному проектированию);
Уравнения статического равновесия:
f m
å Рi = 0; å Mi = 0;
i=1 i=1
где Рi - внешние силы, приложенные к механизму или его звеньям; Mi- внешние моменты сил, приложенные к механизму или его звеньям.
· кинетостатический - для движущихся механизмов при известных массах и моментах инерции звеньев, когда пренебрежение инерционными силами приводит к существенным погрешностям;
Уравнения кинетостатического равновесия:
f n m k
å Рi + å Риi = 0; å Mi + å Mиi = 0;
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39