В качестве примера построим строгую сверхточную функцию дисциплинарной юридической ответственности[62] (Пример №1). В данном случае реальной причиной будет выступать время (иногда оно может выступать реальным, а не мнимым аргументом функции[63]).
Пусть директор завода «К», производящего продукцию s, руководствуясь законодательством о труде и экономическими соображениями, решил стимулировать (использовать «кнут и пряник») увеличение выпуска продукции за счет незначительного повышения времени трудовой деятельности работников предприятия, поскольку очевидна положительная функциональная связь между временем затраченным работниками на выполнение своих профессиональных обязанностей и количеством выпускаемой ими продукции: q=f(t), где q – количество выпускаемой продукции. Пусть для нашего примера определенная функция выпуска продукции от времени в среднем на одного работника составляет в первые утренние часы: q=2t, где t – время в минутах, q – количество деталей в штуках. Следовательно, за каждую минуту работник производит 2 детали вида s, а все работники 2t∙25, поскольку на изучаемом нами предприятии трудится 25 работников примерно равной квалификации. Если бы все работники прибывали на рабочее место на 10 минут раньше времени ноль (допустим это 8 часов утра), принятого за начало отсчета, например, к 7 часам 50 минутам, а не к 8 часам, то они смогли бы дополнительно изготовить пятьсот деталей (q=2∙10∙25=500).
Локальным нормативным актом (приказом по предприятию) директор ввел порядок поощрения и наказания тружеников рублем в зависимости от времени прибытия на рабочее место, а, соответственно и начала работы. Он установил временной диапазон плюс-минус десять минут от начала рабочего дня с оценкой каждой минуты в 10 рублей по эталонной функции справедливости: у(t)=10t, где у – дополнительная оплата в рублях (со знаком минус – вычет премиальных). Очевидно, что оси абсцисс и ординат в таком случае легко шкалировать с помощью вещественных чисел, и они будут обладать очень высокой точностью. Можно учитывать десятые, сотые, тысячные, десятитысячные и так далее доли секунды (точность измерения будет зависеть только от качества используемых часов и императивно установленного округления). То же самое касается и оценки времени в рублях, поскольку можно сколь угодно глубоко детализировать рубли копейками, а копейки их долями. Например, если работник опоздал на полминуты, то из его зарплаты будет удержано 5 рублей, а если пришел раньше на 30 секунд, то получает дополнительно 3 рубля. Прибыл на работу на 10 минут раньше установленного (нулевого срока) – получи 100 рублей. Опоздал на 10 минут – потерял 100 рублей.
Разумеется, что в данном случае руководитель предприятия использует рычаг дисциплинарной юридической ответственности (определенную часть дисциплинарной ответственности). В приложении к данной работе приводится соответствующий поясняющий график (Рис.№1).
Эталонная линия справедливости задана, и достичь точного соответствия помогает специально установленный турникет, четко фиксирующий по магнитным карточкам время прибытия работников. После чего информация о прибытии работников аккумулируется в матрицы и поступает в бухгалтерию. Выплаты могут производиться по каждой отдельной матрице, либо матрицы могут суммироваться за какой-то период времени, например, за каждые три рабочие дня, или по итогам месяца.
Пусть на предприятии трудится 25 работников и 1-го числа данного месяца мы получили следующую матрицу их явки на рабочее место:
где элементы матрицы характеризуют время прибытия на рабочее место конкретных работников по списку относительно начала отсчета 8 часов а.m. (утра) принятого равным нулю. Видно, что многие работники опоздали на работу. В последующие дни явка улучшилась, о чем свидетельствуют матрицы №2 и №3:
Если выплаты осуществляются по итоговой матрице за каждые три трудовых дня, то такая матрица дает следующие результаты:
.
Теперь нам остается лишь умножить итоговую матрицу на число 10 в соответствии с установленной функцией справедливости у(t)=10t, чтобы получить размер премиальных, заработанных каждым из 25 тружеников завода «К». Например, работник, соответствующий элементу матрицы а15 (первая строка, пятый столбец), заработал 33 рубля, поскольку прибывал на рабочее место на 3,3 минуты раньше времени начала отсчета, а работник, соответствующий элементу матрицы а21, понес убытки в размере 30 рублей в виду того, что опоздал на 3 минуты.
Далее уместно получить закон распределения явки работников завода. Он может строиться по любой из матриц явки, переведенной в вектор-столбец. В приложении (рис.№2) приводится закон распределения для суммарной матрицы за третий рабочий день. Из нижеследующей частотной гистограммы, аппроксимированной кривой нормального распределения видно, что распределение стремится к нормальному (хотя еще далеко от такового) с параметрами 2,9 (математическое ожидание) и 2,3 (среднее квадратическое отклонение). То есть труженики прибывают на рабочее место в среднем на три минуты раньше установленного времени начала работы. При этом характерный разброс от среднего составляет около 2,3 минуты. Видно, что группу риска составляют 6 работников, из которых пятеро прибывают на работу в период от минус 0,85 минут до 0,3 минут, а один в период от минус 0,85 до минус 2 минут. Восемнадцать работников прибывают на рабочее место досрочно от 1,45 минуты до 7,20. В приложении к данной работе приводится соответствующая поясняющая гистограмма (рис.№2), а описательная статистика приведена в таблице №1 того же приложения.
Следующий шаг составление карт контроля качества прибытия работников на рабочее место, с помощью которых удобно принимать соответствующие управленческие решения. Предположим, что введенная практика стимулирования досрочного прибытия работников на рабочее место применяется в течение 30 дней, и руководитель предприятия имеет перед собой первичные статистические данные за месяц, естественно, исключая выходные и праздничные дни. В итоге он может разработать удобную карту контроля качества прибытия работников на рабочее место. В приложении к данной работе на рисунке №3 приводится пример такой карты.
До настоящего момента разработано несколько видов контрольных карт, в частности, средних арифметических значений (-карта), размахов (R-карта), медиан (-карта), средних квадратических отклонений (S-карта), числа дефектных изделий (-карта), доли дефектных изделий (Р-карта), числа дефектов (С-карта), числа дефектов на единицу продукции (U-карта) и другие.
Карта контроля – это своеобразный график, на который наносят центральную линию и контрольные границы, после чего здесь отмечают конкретные эмпирические данные процесса, и изучают его динамику. То есть контрольная карта – это разновидность графика, отличающаяся от обычного графика, наличием линий, называемых контрольными границами, или границами регулирования. Эти границы обозначают ширину разброса, образующегося в обычных условиях течения процесса. Если все точки графика входят в область, ограниченную контрольными границами, то это показывает, что процесс протекает в относительно стабильных условиях. И наоборот, выход точек за границы регулирования указывает на то, что процесс разладился и необходимо принимать меры по его наладке. Руководитель предприятия из нашего примера может фиксировать время прибытия работников к началу рабочего дня или изучать динамику других показателей соблюдения трудового распорядка.
Чтобы создать -карту или -карту нужно знать параметры нормального распределения для контролируемого процесса – математическое ожидание (можно заменить средним средних) и среднее квадратическое отклонение(также можно взять среднее средних стандартного отклонения), а далее по формуле определить верхнюю и нижнюю допустимые границы.
Изучая причины опозданий на работу работников, руководитель нашего завода может составить диаграмму Парето, которая наглядно покажет, на что нужно обратить внимание в первую очередь. Пусть, изучая объяснения работников (официальный документ в случае дисциплинарного проступка) по поводу опозданий за прошлый год, он выяснил следующее: 10 опозданий было связано с тем, что работники проспали, 35 опозданий было вызвано плохой работой транспорта, 75 с возможностью подработки на конкурирующем предприятии, 3 случая были связаны с пьянством, и в восьми случаях причины остались невыясненными. На основе этих данных построим диаграмму Парето (Приложение, рис. №4).
Диаграмма Парето наглядно показывает вклад каждой причины в итоговый результат числа опозданий на работу. Легко заметить, что более 80%, а если посчитать точно, то 83,9%, вклада составляют две причины – это подработка и плохая работа транспорта. Ими и следует заниматься в первую очередь. Например, если подработка обеспечивает работникам дополнительный доход сопоставимый в долевом отношении с доходом по основному месту работы, то можно подумать о том, чтобы работники подрабатывали по основному месту трудовой деятельности за ту же или немногим большую плату, которую предлагает конкурент или искать иные пути выхода из сложившейся ситуации, если увеличение времени труда может повлечь за собой нарушение трудового законодательства. Вообще говоря, в данном случае целесообразно построить функцию от чего зависит желание работников трудиться в свободное от основной работы время: λ=f(τ1,τ2… τk), и с учетом соответствующих факторов принимать разумные управленческие решения.
Приложение к примеру №1.
Таблица №1.
Описательная статистика |
|
Среднее |
2,864 |
Стандартная ошибка |
0,46529 |
Медиана |
3,1 |
Мода |
3,1 |
Стандартное отклонение |
2,32646 |
Дисперсия выборки |
5,4124 |
Эксцесс |
-0,6169 |
Асимметричность |
-0,1372 |
Интервал |
9,2 |
Минимум |
-2 |
Максимум |
7,2 |
Сумма |
71,6 |
Счет |
25 |
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54