Аналитическая криминология

Дисперсией случайной функции Y(X) называется неслучайная функция D[Y(X)], значение которой для каждого х равно дисперсии соответствующего сечения случайной функции. В связи с тем, что внутренняя структура случайных процессов весьма различна, например, функции могут идти параллельно друг другу, не пересекаться или, напротив, иметь многочисленные пересечения, «путаницу», но это различие не улавливается ни математическим ожиданием, ни дисперсией, вводится специальная характеристика, называемая корреляционной или автокорреляционной функцией. Данная функция характеризует степень зависимости между сечениями случайной функции, относящимся к  различным значениям х. Так, при близких значениях х величины Y(X) связаны более тесной зависимостью, а при увеличении интервала между сечениями эта зависимость может существенно ослабевать. Вообще, корреляционной функцией случайной функции Y(X) называется неслучайная функция двух аргументов КY(х, х´), которая при каждой паре значений х и х´ (в данном случае ´ (штрих над х) не указывает на производную, а просто отмечает разницу между  двумя значениями х) равна корреляционному моменту соответствующих сечений случайной функции.

Свойство №3. Зеркальную функцию y1,y2,y3ym= f(x) уместно заменить семейством случайных функций Y(X) (их реализаций) и использовать для её исследования характеристики случайных функций: М[Y(X)]; D[Y(X)]; КY(х, х´).

Учитывая тот факт, что оцениваемые деяния и их оценки распределяются по Гауссову закону, распределение случайных точек (х,y) на плоскости x0y также подчиняется Гауссову закону распределения.

Свойство № 4. Эластичность (чувствительность) функции справедливости в n-мерном оценочном пространстве юридической или моральной ответственности[8] всегда равна единице.

Данный факт легко доказать на примере простого двумерного оценочного пространства, в котором эталонная линия справедливости – это биссектриса, то есть функция в которой не только тангенс угла наклона равен единице, но и нет свободного члена в уравнении, а, следовательно, она проходит через начало координат. Отсюда точки пересечения функцией координатных осей совпадают, и находятся в начале координат. Эластичность (чувствительность) государственного реагирования по поведению субъекта правовых отношений в данном случае всегда равна единице, поскольку эластичность геометрически – это модуль расстояния от точки М, в которой измеряется эластичность, до точки пересечения с осью ординат, деленное на модуль расстояния от точки М до точки пересечения с осью абсцисс. Но в нашем случае точка пересечения с осью абсцисс и осью ординат совпадают, а, значит, , для любой точки на линии биссектрисы.

Свойство №5. Функция справедливости в оценочном пространстве юридической или моральной ответственности имеет максимум и минимум только в граничных точках области определения, поскольку является монотонно возрастающей линейной функцией. Минимум расположен в точке -10, а максимум в точке 10, если эти точки приняты граничными.

Свойство №6. Распределение системы двух случайных величин X и Y на плоскости x0y подчиняется Гауссову закону распределения:

, где имеется 5 параметров mx – математическое ожидание величины х, my - математическое ожидание величины y, sx – среднее квадратическое отклонение величины х, sy – среднее квадратическое отклонение величины y, r – коэффициент корреляции между величинами x и y.

С учетом того обстоятельства, что на пересечении координатных осей находится нейтральное поведение, за которое нельзя ни поощрить, ни наказать деятеля (субъекта правовых отношений), то для многомерных оценочных пространств всегда mx=0 и my=0, если принять  стандартные отклонения по переменным х и у равные трём, а коэффициент корреляции между ними равным 0,5, поскольку будущая оценка поведения все-таки обычно влияет на поведение деятелей, то получим нижеследующее вполне реалистичное распределение плотности вероятности переменных х и у:

 .

Нужно отметить, если случайная точка (х,y) на плоскости подчинена нормальному закону и при этом главные оси рассеивания  параллельны координатным осям, а величины X и Y не коррелированны (независимы), то исходная формула заметно упрощается: . В соответствии со свойством №4 вероятность попадания случайной точки (х,y) в прямоугольник G,  стороны которого параллельны  координатным осям x0y (то есть главным осям рассеивания), можно рассчитать по формуле: , где P (X,Y) вероятность попадания точки в прямоугольник, [a; b] и [c; v]– стороны прямоугольника. Более удобная формула для подобных расчетов:

, где Ф*(x) - нормальная функция распределения (табличная).

Для нашего примера при отсутствии корреляции между переменными Х и Y получим простое графическое решение задачи представленное в приложении (рис. №1). Вместе с тем в нашем случае Х и Y могут быть коррелированными между собой, и тогда упрощенная формула даст менее точный результат расчетов. 

Свойство №7. Нетривиальное оценочное пространство может быть представлено как система трех и более случайных величин с плотностью распределения:  и соответствующими характеристиками (математическим ожиданием, дисперсией, стандартным отклонением, корреляционными моментами).


ПРИЛОЖЕНИЯ


3. Закон «нормального распределения» и его приложения в аналитической криминологии.

Закон «нормального» распределения, который также называют законом Гусса-Лапласа, законом Гаусса описывает широкий спектр физических, химических, биологических, социальных, в том числе и правовых явлений. В частности, деяния субъектов правовых отношений в пространстве юридической ответственности распределяются по данному закону. По этому же закону распределяется рост, вес, интеллект и многие другие показатели, характеризующие различные изучаемые совокупности. В учебной литературе отмечается, что первооткрывателем данного закона является Абрахам де Муавр, который установил его в 1727 году. Дальнейшее развитие и уточнение данного закона связано с такими именами, как  Пьер Лаплас, Карл Гаусс, А.М.Ляпунов.

Ниже представлен простой график, иллюстрирующий сущность закона нормального распределения, на примере распределения деяний в двумерном пространстве юридической ответственности.

         Рис.№2. Распределение деяний в пространстве юридической ответственности (положительной и отрицательной). Плотность распределения – площадь под графиком.

Из графика видно, что нейтральное поведение (за которое нельзя ни поощрить, ни наказать субъекта правовых отношений) является наиболее вероятным, то есть обладающим максимальной частотой встречаемости, в то время как поведение особо негативное и особо позитивное встречаются все реже и реже, на что указывают ниспадающие, асимптотически приближающиеся к оси абсцисс «хвосты» распределения (левый и правый). Простейший  закон нормального распределения описывается формулой , где f(x) – плотность распределения, например, преступности, m – математическое ожидание (можно заменить средним значением вариационного ряда), s - стандартное отклонение частотного ряда. То есть, чтобы построить конкретное нормальное распределение нужно знать всего два параметра – математическое ожидание и среднее квадратическое отклонение. При изучении юридической ответственности математическое ожидание нами принимается равным нулю, а среднее квадратическое отклонение равным трем. То есть строится график функции (или соответствующая таблица) .

Свойства закона нормального распределения:

         1). Математическое ожидание, мода и медиана совпадают (равны одному и тому же числу).

         2). Отклонения от математического ожидания расположены симметрично относительно него.

         3). Правило трех сигм: если случайная величина X имеет нормальный закон распределения с параметрами m и s2, то практически достоверно, что её значения заключены в интервале (m-3s, m+3s). Отсюда следует важный практический вывод, что отклонение нормально распределенной величины Х свыше трех сигм имеет вероятность равную 0,0027 (0,27%), то есть ничтожно малую вероятность. При этом основная масса событий (68,27%) будет сгруппировано в пределах первых двух сигм, примыкающих к математическому ожиданию слева (34,13%) и справа (34,13%), далее в пределах вторых сигм по 13,59% (в сумме 27,18%) и в пределах третьих по 2,14% (4,28%).

         4). Коэффициенты асимметрии и эксцесса равны нулю.

         5). Кривая имеет две точки перегиба на расстоянии плюс-минус одно стандартное отклонение. 

         Аппроксимируя эмпирический вариационный ряд теоретическим распределением, следует выяснить, значимо ли различаются между собой теоретическая и эмпирическая кривые. Для этого используют различные критерии – Пирсона, Романовского, Колмогорова[9]

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать