Аналитическая криминология

         Предположим, что студентка А имела 2 пропуска, из которых один отработала, сделала один доклад и представила реферат, получила две отличных оценки на семинарских занятиях и сдала три аттестации на отлично. Её оценка в таком случае составит: у=60-5+5+3+2+10+15=90 баллов или 5 по обычной пятибалльной шкале.

         Студент, не желающий являться на итоговую третью аттестацию, считающий число набранных баллов достаточным для себя, может не являться на аттестацию, поскольку и так получит итоговую оценку.

         Далее построим две простые математические модели – модель средней оценки и модель предельной (маржинальной) оценки. Первая модель будет показывать, какая оценка приходится в среднем на каждого студента в группе (на курсе, в вузе, во всех вузах). Очевидно, что данная модель хуже, чем модель предельной оценки будет отражать индивидуальные различия. Покажем это на простом примере с 4-х бальной системой оценивания от 2 до 5 включительно.

         Таблица №3. Средние и предельные оценки

№/№

студента

Оценка

Предельная оценка

1

5

0

2

5

-1

3

4

0

4

4

0

5

4

-1

6

3

0

7

3

0

8

3

0

9

3

-1

10

2

Сумма

36

2

Среднее

3,6

0,2

                    

         Легко заметить, что, судя по средним, группа студентов в количестве 10 человек учится на 3,6 балла. То есть каждому студенту не зависимо от его реальных достижений в соответствие ставится 3,6 балла – и отличнику и двоечнику. Здесь они не различаются. Иронизируя, можно сказать, что отличники и хорошисты переживают, а двоечники и троечники радуются. В среднем по группе успеваемость носит убывающий характер (свойство №1). Возрастающего, при ранжировании от высших оценок к низшим, она иметь не может (свойство №2), но в ней может отсутствовать убывающий характер тогда и только тогда (единственный случай), когда все оценки являются высшими, и функция оценок параллельна оси абсцисс (свойство №3). У такой функции нет производной, показывающей скорость изменения функции. Для нашего примера функция успеваемости группы носит отрицательный характер, то есть является типичной с коэффициентом регрессии равным 0,3 и свободным членом равным пяти. Свободный член в уравнении функции оценок не является постоянной величиной (свойство №4) и всегда равен высшей оценке, полученной в исследуемой совокупности студентов (свойство №5). Можно сказать, что качество подготовки группы выше среднего, поскольку коэффициент при х равен минус 0,3, то есть он больше минус 0,5, а если сравнивать по модулям, соответственно, наоборот, и линия на графике является более пологой (менее крутой). Очевидно, чем больше будет тангенс угла наклона функции оценок (первая производная данной функции), тем хуже успеваемость в группе (группах), поскольку данный коэффициент (отрицательный) показывает, насколько быстро падает успеваемость в группе при переходе от отличников к ударникам, троечникам и двоечникам, то есть насколько быстро ухудшается положение дел (свойство №6). В нашем примере при смещении вправо на одну единицу (на одного студента) успеваемость в среднем падает на 0,3 балла.

         ВЫВОД: перечисленные свойства №1-№6 носят универсальный характер независимо от вида конкретных функций оценок, то есть того, в каких величинах, и в каком диапазоне происходит измерение (четырех-, десяти- и т.д. бальная или иная система) при прочих равных обстоятельствах, если мы не меняем порядка ранжирования и других принципов оценивания. При смене порядка ранжирования на обратный, получим симметричную схему оценивания и обратные свойства. То есть функция будет не убывающей, а возрастающей от двоечников к отличникам и т.д.

        

Функция предельных оценок в отличие от функции средних показывает нам различия между соседствующими группами студентов (свойство №1), то есть говорит насколько отличники отличаются от хорошистов, хорошисты от троечников, троечники от двоечников. Особое значение это будет иметь, когда бальность возрастет, например, до 99, 150, 1000 и т.п.).

Нужно отметить, что в обоих случаях мы использовали режим дискретных значений, а, следовательно, функции брали с известной долей условности, но если предположить, что число студентов достаточно велико, равно как велико число выставляемых оценок, то дискретные значения можно заменить непрерывными.

Очевидно, что педагогические оценочные пространства не столь просты, как это может показаться на первый взгляд. Достаточно ввести такой показатель, как результативность образовательного процесса:

 у=f(x1,x2xn), чтобы убедиться в обратном. Такая результативность является следствием целого ряда переменных, куда относится уровень способностей студента (студентов), время отведенное и время затраченное на подготовку по предмету (предметам), качество преподавания, наличие и качество учебной литературы, её доступность,  уровень притязаний студента и уровень требований преподавателя, а также общие требования по качеству подготовки, влияющие на уровень требовательности преподавателей. Сюда уместно отнести и некоторые другие переменные, которые мы опускаем, например, уровень прежней подготовки студента, опыт работы преподавателя, состояние здоровья студента и преподавателя, качество питания и образ жизни студента, например, злоупотребление спиртными напитками, наличие коррупционных составляющих в образовательном процессе и т.п. Даже погодная компонента во время экзамена может заметно отразиться на качестве сдачи экзамена. Означенные переменные определенным образом могут коррелировать друг с другом (это необходимо учитывать при спецификации модели, чтобы получить несмещенный, эффективный и состоятельный результат), выдавая итоговый усредненный совокупный эффект в виде полученной экзаменационной оценки. При спецификации математической модели, включении в нее или исключении из нее переменных, не следует смешивать, с одной стороны, связь между результирующей переменной и конкретными факторными переменными, со связью, с другой стороны, между факторными переменными. Например, оценки студентов могут повышаться за счет высокого качества преподавания, усиливаемого доступной и хорошо подготовленной учебной литературой. При этом, однако, наличие учебной литературы может не коррелировать или лишь незначительно коррелировать  с качеством преподавания, и тогда обе переменные следует включать в объяснительную модель.          

         Таким образом, педагогические оценочные пространства, с одной стороны, могут быть достаточно простыми, и тогда не составляет труда разработать подходящие математические модели для оценивания, как естественных, так и гуманитарных дисциплин. С другой, здесь существуют довольно сложные связи, моделировать которые уместно адекватными сложными математическими средствами. Мы показали, что в педагогических оценочных пространствах несложно достичь высокого уровня справедливости даже по обществоведческим и гуманитарным дисциплинам, если оценка выставляется по формуле заранее согласованной преподавателем со студентами. В таком случае авторитет преподавателя в глазах студентов только возрастает, а полученные ими оценки будут вполне объективными, отражающими не только их способности, уровень полученных знаний, умений и навыков, но и трудолюбие, проявленную инициативу. Не вызовет такой подход и нареканий со стороны руководства соответствующего учебного заведения, поскольку не противоречит логике выставления экзаменационных, итоговых оценок. Кроме того, мы выявили общие свойства средних и предельных функций оценивания чрезвычайно полезные для исследования качества образования.


РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Афанасьев В.Н., Юзбашев М.М. Анализ временных рядов и прогнозирование: Учебник. – М.: Финансы и статистика, 2001. – 228 с.

Беккер Г.С. Человеческое поведение: экономический подход. Избранные труды по экономической теории: Пер.с англ. / Сост., науч. ред., послесл. Р.И.Капелюшников; предисл. М.И.Левин. – М.: ГУ ВШЭ, 2003. – 672 с.

Вентцель Е.С. Теория вероятностей: Учебник для студ. вузов/Елена Сергеевна Вентцель. – 9-е изд., стер. – М.: Издательский центр «Академия», 2003. – 576 с.

Гилинский Я.И. Девиантология: социология преступности, наркотизма, проституции, самоубийств и других «отклонений». – СПб: Издательство «Юридический центр Пресс», 2004. – 520 с

Доугерти К. Введение в эконометрику: Пер. с англ. – М.: ИНФРА-М, 1999. – 402 с.

Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учебник/Под ред. И.И.Елисеевой. – 5-е изд., перераб. и доп. – М.: Финансы и статистика, 2004. – 656 с.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать