Аналитическая криминология

карта контроля качества – это график, на который наносят центральную линию и контрольные границы, после чего здесь отмечают  конкретные эмпирические данные процесса, и изучают его динамику. То есть контрольная карта – это разновидность графика, отличающаяся от обычного графика, наличием линий, называемых контрольными границами, или границами регулирования. Эти границы обозначают ширину разброса, образующегося в обычных условиях течения процесса;

диаграмма Парето – диаграмма построенная по принципу убывания вклада и накапливания процента (до 100%), удобная для представления и исследования структурного вклада, например, какой вклад, вносят конкретные детерминанты (факторы) в формирование преступности или, какой долевой вклад в структуру преступности вносят её конкретные структурные составляющие - кражи, грабежи, разбои и т.д.;

F-статистика Фишера – показатель качества регрессионного уравнения в целом (эмпирический коэффициент сравнивается с табличным).


ОСНОВНЫЕ  ТЕРМИНЫ:

математическое моделирование юридических, криминогенных и иных социальных процессов, функция, аргумент функции (объясняющая, управляющая переменная, предиктор, независимая переменная, факторная переменная, экзогенная переменная); функция (зависимая переменная, эндогенная переменная, управляемая, объясняемая переменная, результативная переменная); область определения функции, область значений функции; параметры уравнения, первая производная функции, свободный член; коэффициент регрессии (первая производная), коэффициент корреляции, коэффициент детерминации, F-статистика Фишера, t-статистика; нулевая гипотеза, альтернативная (исследовательская) гипотеза; диаграмма разброса,  дисперсия, стандартное отклонение; стандартная ошибка регрессии, стандартная ошибка коэффициента регрессии, стандартная ошибка сдвига (свободного члена); доверительный интервал; общая дисперсия, остаточная дисперсия, факторная дисперсия (объясненная дисперсия); средняя ошибка аппроксимации; коэффициент эластичности; коэффициент Джини; линейный коэффициент корреляции, множественный коэффициент корреляции, коэффициенты ассоциации и контингенции, коэффициент взаимной сопряженности Пирсона-Чупрова, а также коэффициент Фехнера, коэффициент  Спирмена, коэффициент корреляции Кендалла, положительная и отрицательная корреляция, слабая, умеренная и сильная корреляционная связь; закон Оукена, кривая Филипса.


♫ Практическое применение (показательные примеры):

♪☻

Задача №1.

Дано: интуитивно представляется, что число выявленных лиц,  совершивших преступления должно зависеть от числа зарегистрированных преступлений. В этой связи следует сформулировать рабочую (исследовательскую) гипотезу и проверить её с помощью регрессионно-корреляционного анализа.

Таблица №1.

t, годы

Зарегистрированно преступлений, шт.

Выявлено лиц, совершивших преступления, чел.

1987

1185914

969338

1988

1220361

834673

1989

1619181

847577

1990

1839451

897229

1991

2167964

956258

1992

2760652

1148962

1993

2799614

1262735

1994

2632708

1441562

1995

2755669

1595501

1996

2625081

1618394

1997

2397311

1372161

1998

2581940

1481503

1999

3001748

1716679

2000

2952367

1741439

2001

2968255

1644242

2002

2526305

1257700

2003

2756398

1236733

2004

2893810

1222504

2005

3554738

1297123

2006

3855373

1360860


Требуется: 1) сформулировать нулевую и альтернативную гипотезы; 2) провести спецификацию модели; 3) сделать таблицу данных; 4) построить  диаграмму разброса (рассеяния)[84] для переменных модели и аппроксимирующую функцию (методом наименьших квадратов); 5) Вычислить параметры уравнения; 6) оценить статистическую значимость параметров уравнения; 7) измерить коэффициент детерминации и дать его интерпретацию; 8) вычислить среднюю ошибку аппроксимации; 9) оценить качество полученного регрессионного уравнения в целом с использованием средней ошибки аппроксимации; 10) оценить качество регрессионного уравнения с помощью F-критерия Фишера; 11) измерить эластичность числа выявленных лиц, совершивших преступления по числу совершенных преступлений и дать интерпретацию полученному коэффициенту эластичности; 12) оценить без использования (точечная оценка) и с использованием доверительных интервалов (интервальная оценка), какое число лиц будет выявлено в случае, если число зарегистрированных преступлений составит величину равную 4500000.

РЕШЕНИЕ:

1). Нулевая гипотеза гласит, что между переменными «число выявленных лиц, совершивших преступления» и «число зарегистрированных преступлений» статистически значимая связь отсутствует. Данная гипотеза принимается без доказательств. Альтернативная гипотеза, напротив, указывает на то, что между переменными модели существует статистически значимая связь.

2). Проведем спецификацию модели – определим зависимую и независимую переменные. В качестве независимой переменной выберем число зарегистрированных преступлений, которую обозначим через х, а в качестве зависимой переменной (y) – число выявленных лиц, совершивших преступления. Такой характер зависимости представляется очевидным, поскольку сначала совершается, выявляется и регистрируется преступление, а потом уже ведется работа по выявлению лица или лиц, его совершивших, которая может быть более или менее успешной.

3).  Построим диаграмму разброса и график зависимости между переменными[85] в программе  Excel, а также проведем полный регрессионный анализ с помощью данного аналитического пакета:

Как видно, с помощью программы мы нанесли точки на координатную ось, построили аппроксимирующее линейное уравнение с соответствующими параметрами, а также получили коэффициент детерминации. Диаграмма рассеяния показывает, что в целом связь между переменными положительная, хотя две последние точки находятся ниже аппроксимирующей кривой, указывая, что большим значениям преступности соответствуют меньшие значения выявленных лиц. Отчасти такое состояние дел можно объяснить началом «работы» нового УПК РФ (вступил в силу в середине 2002 года).

Войдя в функцию «регрессия» пакета «анализ данных» меню «сервис» можно провести полноценный корреляционно-регрессионный анализ первичных статистических данных. Ниже приводятся соответствующие таблицы:

ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R

0,673393962

R-квадрат

0,453459428

Нормированный R-квадрат

0,423096063

Стандартная ошибка регрессии

219310,9469

Наблюдения

20

           

Дисперсионный анализ

Число степеней свободы

Суммы квадратов отклонений

Дисперсия на одну степень свободы

F-критерий

Фишера


df

SS

MS

F(факт)

Значимость F

Регрессия (факторная вариация)

k1=число объясняющих переменных (m) = 1

7,18305E+11

7,18305E+11

14,93442598

0,001135789

Остаток (остаточная дисперсия)

k2 =N-m-1=18

8,65751E+11

48097291434



Итого (общая вариация)

N-1=19

1,58406E+12




Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать